期刊文献+
共找到1,049篇文章
< 1 2 53 >
每页显示 20 50 100
Iridium-based electrocatalysts for acidic oxygen evolution reaction
1
作者 Yanhui Yu Gai Li +10 位作者 Yutong Xiao Chi Chen Yuhang Bai Tianjiao Wang Jing Li Yingjie Hua Daoxiong Wu Peng Rao Peilin Deng Xinlong Tian Yuliang Yuan 《Journal of Energy Chemistry》 2025年第4期200-224,共25页
Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong... Hydrogen production from water electrolysis,in particular from proton exchange membrane water electrolyzers(PEMWE),is a key approach to realizing a carbon-free energy cycle.However,the high anodic potential and strong acid in PEMWE systems pose a major challenge to the stability of electrocatalysts,and the development of efficient and corrosion-resistant catalysts is urgently needed.Currently,iridium(Ir)-based catalysts have gained great attention due to their promising activity and stability,while the extremely low reserves of Ir in the earth seriously hinder the commercialization of PEMWE.Therefore,a systematic understanding of the latest advances in Ir-based catalysts is necessary to guide their rational design to meet the industrial requirements.In this review,the general reaction mechanisms and advanced characterization techniques for mechanism recognition are first introduced.Afterwards,the systematic design strategies and performances of Ir-based catalysts,including metallic Ir,Ir oxides,and Ir-based perovskites,are summarized in detail.Finally,the conclusions,challenges,and prospects for Ir-based electrocatalysts are presented. 展开更多
关键词 ELECTROLYSIS Water splitting oxygen evolution reaction Ir-based catalysts oxygen evolution reaction mechanisms
在线阅读 下载PDF
Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance 被引量:1
2
作者 ZHAI Haoying WEN Lanzong +3 位作者 LIAO Wenjie LI Qin ZHOU Wenjun CAO Kun 《无机化学学报》 北大核心 2025年第5期1037-1048,共12页
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano... Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance. 展开更多
关键词 hydrothermal method tannic acid metal‑organic framework ELECTROCATALYSIS oxygen evolution reaction
在线阅读 下载PDF
Ru⁃doped Co_(3)O_(4)/reduced graphene oxide:Preparation and electrocatalytic oxygen evolution property 被引量:1
3
作者 TIAN Tian ZHOU Meng +5 位作者 WEI Jiale LIU Yize MO Yifan YE Yuhan JIA Wenzhi HE Bin 《无机化学学报》 北大核心 2025年第2期385-394,共10页
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then... Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2). 展开更多
关键词 metal-organic framework GRAPHENE ELECTROCATALYST oxygen evolution reaction
在线阅读 下载PDF
Cation and anion modulation activates lattice oxygen for enhanced oxygen evolution 被引量:1
4
作者 Mingxing Chen Zihe Du +8 位作者 Nian Liu Huijie Li Jing Qi Enbo Shangguan Jing Li Jiahao Cao Shujiao Yang Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 2025年第2期282-291,共10页
Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy... Oxygen evolution reaction(OER)is often regarded as a crucial bottleneck in the field of renewable energy storage and conversion.To further accelerate the sluggish kinetics of OER,a cation and anion modulation strategy is reported here,which has been proven to be effective in preparing highly active electrocatalyst.For example,the cobalt,sulfur,and phosphorus modulated nickel hydroxide(denoted as NiCoPSOH)only needs an overpotential of 232 mV to reach a current density of 20 mA cm^(–2),demonstrating excellent OER performances.The cation and anion modulation facilitates the generation of high-valent Ni species,which would activate the lattice oxygen and switch the OER reaction pathway from conventional adsorbate evolution mechanism to lattice oxygen mechanism(LOM),as evidenced by the results of electrochemical measurements,Raman spectroscopy and differential electrochemical mass spectrometry.The LOM pathway of NiCoPSOH is further verified by the theoretical calculations,including the upshift of O 2p band center,the weakened Ni–O bond and the lowest energy barrier of rate-limiting step.Thus,the anion and cation modulated catalyst NiCoPSOH could effectively accelerate the sluggish OER kinetics.Our work provides a new insight into the cation and anion modulation,and broadens the possibility for the rational design of highly active electrocatalysts. 展开更多
关键词 oxygen evolution reaction ELECTROCATALYSIS Lattice oxygen mechanism High-valent metal species Cation and anion modulation
在线阅读 下载PDF
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
5
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 Catalyst-support interaction Supported catalysts HETEROINTERFACE oxygen evolution reaction Zn-air batteries
在线阅读 下载PDF
Boosting Oxygen Evolution Reaction Performance on NiFe‑Based Catalysts Through d‑Orbital Hybridization
6
作者 Xing Wang Wei Pi +3 位作者 Sheng Hu Haifeng Bao Na Yao Wei Luo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期281-292,共12页
Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal int... Anion-exchange membrane water electrolyzers(AEMWEs)for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts.By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units,the d-orbital and electronic structures can be adjusted,which is an important strategy to achieve sufficient oxygen evolution reaction(OER)performance in AEMWEs.Herein,the ternary NiFeM(M:La,Mo)catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work.Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen,resulting in enhanced adsorption strength of oxygen intermediates,and reduced rate-determining step energy barrier,which is responsible for the enhanced OER performance.More critically,the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm^(−2) in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h. 展开更多
关键词 NiFe-based catalysts d-orbital coupling oxygen evolution reaction Anion exchange membrane electrolyzer
在线阅读 下载PDF
Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide:On the Origin of Photocatalytic Oxygen Evolution Activity
7
作者 Yi-Qing Wang Zhi Lin +1 位作者 Ming-Tao Li Shao-Hua Shen 《电化学(中英文)》 北大核心 2025年第5期28-36,共9页
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her... Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution. 展开更多
关键词 Photocatalytic oxygen evolution Polymeric perylene diimide Atomic structure Electronic structure Reaction pathway
在线阅读 下载PDF
Ionic Liquid Enhanced Proton Transfer for Neutral Oxygen Evolution Reaction
8
作者 Ming-Xing Chen Nian Liu +2 位作者 Zi-He Du Jing Qi Rui Cao 《电化学(中英文)》 北大核心 2025年第7期27-36,共10页
The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec... The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts. 展开更多
关键词 ELECTROCATALYSIS oxygen evolution reaction Ionic liquid Proton transfer CoSn(OH)_(6)nanocube
在线阅读 下载PDF
Metal‑organic framework‑templated construction of FeOOH@CoMoO_(4)/nickel foam heterostructure for enhanced oxygen evolution reaction
9
作者 YANG Shaohua GAO Na'na GONG Yaqiong 《无机化学学报》 北大核心 2025年第10期2175-2185,共11页
Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face o... Through employing zeolitic imidazolate framework-67(ZIF-67)templates,the straightforward hydrother-mal and electrodeposition methods were applied to synthesize FeOOH@CoMoO_(4)heterostructure attached to the sur-face of nickel foam(NF).The specific structure of the as-prepared FeOOH@CoMoO_(4)/NF-400s provided pronounced porosity and extensive surface area,enhancing rapid electron transport and exposing abundant active sites to improve catalytic reactions.Furthermore,the introduction of FeOOH,which induces electron transfer from FeOOH to CoMoO_(4),confirms their strong electronic interaction,thereby leading to an accelerated surface catalytic reaction.Consequently,the constructed FeOOH@CoMoO_(4)/NF-400s heterostructure demonstrated exceptional oxygen evolu-tion reaction(OER)activity,requiring an overpotential of 199 mV to deliver the current density of 10 mA·cm^(-2),cou-pled with the superior Tafel slope value of 49.56 mV·dec^(-1)and outstanding stability over 20 h under the current densities of both 10 and 100 mA·cm^(-2). 展开更多
关键词 template sacrifice approach zeolitic imidazolate framework-67 oxygen evolution reaction ELECTROCATALYSTS
在线阅读 下载PDF
Rutile-structured high-entropy oxyfluorides:A platform for oxygen evolution catalysis
10
作者 Shengliang Qi Kaixin Zhu +2 位作者 Ting Xu Weiguang Ma Xu Zong 《Journal of Energy Chemistry》 2025年第3期253-262,共10页
High-entropy(HE)design provides ample opportunities for accessing catalysts with unique physiochemical properties for advanced energy and environmental applications.Although a variety of multi-cationic high-entropy ma... High-entropy(HE)design provides ample opportunities for accessing catalysts with unique physiochemical properties for advanced energy and environmental applications.Although a variety of multi-cationic high-entropy materials(HEMs)have been identified,HEMs consisted of multiple cationic and anionic elements are still limited.Herein,we present the design and synthesis of a series of rutile-structured high-entropy oxy fluorides(HEOFs),including[RuO_(2)]_(x)[MgMnZnCoF_(2)]_(y),[MnO_(2)]_(x)[MgMnZnCoF_(2)]_(y),[MoO_(2)]_(x)[MgMnZnCoF_(2)]_(y),[SnO_(2)]_(x)[MgMnZnCoF_(2)]_(y)and[TiO_(2)]_(x)[MgMnZnCoF_(2)]_(y)(x:y=3:1,2:1,1:1).All the HEOFs are obtained through mechanochemical alloying rutile-structured oxide and fluoride precursors and the HEOFs inherit the crystal structures of the skeleton oxides.Moreover,the HEOFs exhibit enhanced electrocatalytic oxygen evolution reaction(OER)activity than the corresponding oneelement precursors.Typically,the best-performed HEOF[RuO_(2)]_(3)[MgMnZnCoF_(2)]_(1)catalyst requires an overpotential of 240 mV to achieve a current density of 10 mA cm^(-2),which is lower than RuO_(2)(291 mV),More impressively,the specific mass activity of[RuO_(2)]_(3)[MgMnZnCoF_(2)]_(1)is 537.1 A g_(Ru)^(-1)at1.55 V(vs RHE),which is ca.7.6 times that of RuO_(2)(70.5 A g_(Ru)^(-1)).The enhanced electrocata lytic OER performance obtained on[RuO_(2)]_(3)[MgMnZnCoF_(2)]_(1)is ascribed to the contribution of the different cationic and anionic elements that modulates the electronic structures of the pristine RuO_(2),which facilitates efficient OER kinetics.This work demonstrates the efficacy of high-entropy design towards approaching excellent catalysts for enhanced electrocatalysis. 展开更多
关键词 Rutile-structured High-entropy oxyfluorides MECHANOCHEMICAL Electrocatalyst oxygen evolution reaction
在线阅读 下载PDF
Triple-function Mn regulation of NiFe(oxy)hydroxide for oxygen evolution reaction
11
作者 Hui Wan Meng-Yuan Xie +10 位作者 Bo Li Jian-Hang Nie Tao Huang Lei Li Jing-Hui Shi Ming-Hua Xian Jia-Rong Huang Wangyu Hu Gui-Fang Huang Fei Gao Wei-Qing Huang 《Journal of Materials Science & Technology》 2025年第4期1-9,共9页
Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incor... Transition metal(oxy)hydroxides are potential oxygen evolution reaction(OER)electrocatalysts;however,simultaneously modulating multiple factors to enhance their performance is a grand challenge.Here,we report an incorporating heteroatom strategy via one-step hydrothermal approach to adjust more than one factor of Mn-doped NiFe(oxy)hydroxide(Mn-NiFeOOH/LDH)heterojunction.Mn doping regulates heterojunction morphology(reducing nanoparticles and becoming thinner and denser nanosheets),Ni/Fe ratio and valence states(Ni^(2+),Ni^(3+),and Ni^(3+Δ))of Ni ions.The former could effectively increase surface active sites,and the latter two reduce the content of Fe in the Mnx-NiFeOOH/LDH heterojunction,en-abling more Ni^(2+)convert to Ni^(3+/3+Δ)that have higher intrinsic OER activity.As a result,the first-rank Mn-NiFeOOH/LDH with ultra-low overpotential of 185 mV@20 mA cm^(-2) and 296 mV@500 mA cm^(-2),and the improved OER performance are outdo to those of commercial RuO_(2) catalyst for OER.Moreover,the Mn-NiFeOOH/LDH affords the earliest initial potential(1.392 V vs.RHE),corresponds to a recorded low overpotential(162 mV).Based on the density functional theory(DFT),Mn dopants can alter intermedi-ate adsorption energy and effectively decrease∗OOH’s energy barrier.This research exhibits a feasible strategy to design low cost electrocatalysts and provide new possibilities for future industrialization. 展开更多
关键词 Electrocatalysts Triple-function Heteroatoms adjusting DFT oxygen evolution reaction
原文传递
Strategic metal substitution for enhanced visible-light-driven oxygen evolution in heterometallic MOFs
12
作者 Cui Luo Peng-Hui Li +3 位作者 Wei-Ming Liao Qia-Chun Lin Xiao-Xiang Zhou Jun He 《Chinese Journal of Structural Chemistry》 2025年第7期60-66,共7页
Oxygen evolution reaction(OER),a critical half-reaction in photocatalytic overall water splitting for producing hydrogen,is a key step toward sustainable energy conversion.Conventional photocatalysts often suffer from... Oxygen evolution reaction(OER),a critical half-reaction in photocatalytic overall water splitting for producing hydrogen,is a key step toward sustainable energy conversion.Conventional photocatalysts often suffer from limited light absorption and rapid charge recombination,hindering their further applications.To address these challenges,we have designed and synthesized a novel series of self-sensitized metal-organic frameworks(MOFs),Fe_(2)MCDDB(M=Ni,Mn,or Co).By incorporating photosensitive ligands,we have achieved efficient charge separation and promoted the transfer of photogenerated electrons to the active metal sites for water oxidation.Among the series,Fe_(2)NiCDDB exhibits exceptional OER activity,achieving an oxygen evolution rate of 125.3μmol g^(−1)h^(−1)under visible light irradiation.Experimental and theoretical results reveal that the optimized electronic structure and prolonged excited-state lifetime of Fe_(2)NiCDDB contribute to its enhanced catalytic performance.This work provides a promising strategy for designing two-in-one MOF photocatalysts for water oxidation. 展开更多
关键词 Heterometallic MOF Visible-light-driven PHOTOCATALYSIS LCCT oxygen evolution reaction
原文传递
2D coordination polymers of transition metals as catalysts for oxygen evolution reaction
13
作者 Mikhail N.Khrizanforov Anastasiia P.Samorodnova +5 位作者 Ilya A.Bezkishko Radis R.Gainullin Kirill V.Kholin Aidar T.Gubaidullin Ruslan P.Shekurov Vasili A.Miluykov 《Materials Reports(Energy)》 2025年第2期77-85,I0002,共10页
The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic... The oxygen evolution reaction(OER)is a key process in water splitting for hydrogen production,yet its sluggish kinetics pose significant challenges for catalyst development.In this work,we present the first systematic study on isostructural 2D coordination polymers(CPs)based on 1,10-ferrocenediyl-bis(H-phosphinic)acid,with cobalt,manganese,and cadmium metals as electrocatalysts for OER.These polymers were synthesized via a facile solution reaction,yielding crystalline materials with excellent structural integrity.The electrocatalytic performance of CPs composites,prepared with carbon and phosphonium ionic liquid,was evaluated in 0.1 M KOH using a three-electrode system.Notably,the Co-and Cd-based CPs demonstrated exceptional OER activity,achieving an overpotential as low as 236–255 mV at 10 mA cm^(-2),surpassing those of many previously reported CP-based OER catalysts.Furthermore,these materials exhibited high stability over prolonged electrolysis,maintaining their activity without significant degradation.This work not only introduces a new class of ferrocenyl phosphinatebased CPs as highly active and durable OER catalysts but also provides valuable insights into their structureactivity relationships,paving the way for future advancements in electrocatalysis. 展开更多
关键词 oxygen evolution reaction 2D coordination polymers Ferrocenyl phosphinate ligands ELECTROCATALYSIS Water splitting Surface morphology OVERPOTENTIAL Catalytic stability
在线阅读 下载PDF
S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S,N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution
14
作者 Bin Zhao Heping Luo +6 位作者 Jiaqing Liu Sha Chen Han Xu Yu Liao Xue Feng Lu Yan Qing Yiqiang Wu 《Chinese Chemical Letters》 2025年第5期733-739,共7页
Industrial high-current-density oxygen evolution catalyst is the key to accelerating the practical application of hydrogen energy.Herein,Co_(9)S_(8)/CoS heterojunctions were rationally encapsulated in S,N-codoped carb... Industrial high-current-density oxygen evolution catalyst is the key to accelerating the practical application of hydrogen energy.Herein,Co_(9)S_(8)/CoS heterojunctions were rationally encapsulated in S,N-codoped carbon((Co_(9)S_(8)/CoS)@SNC)microleaf arrays,which are rooted on S-doped carbonized wood fibers(SCWF).Benefiting from the synergistic electronic interactions on heterointerfaces and the accelerated mass transfer by array structure,the obtained self-supporting(Co_(9)S_(8)/CoS)@SNC/SCWF electrode exhibits superior performance toward alkaline oxygen evolution reaction(OER)with an ultra-low overpotential of 274 mV at 1000 mA/cm^(2),a small Tafel slope of 48.84 mV/dec,and ultralong stability up to 100 h.Theoretical calculations show that interfacing Co_(9)S_(8)with CoS can upshift the d-band center of the Co atoms and strengthen the interactions with oxygen intermediates,thereby favoring OER performance.Furthermore,the(Co_(9)S_(8)/CoS)@SNC/SCWF electrode shows outstanding rechargeability and stable cycle life in aqueous Zn-air batteries with a peak power density of 201.3 mW/cm^(2),exceeding the commercial RuO_(2)and Pt/C hybrid catalysts.This work presents a promising strategy for the design of high-current-density OER electrocatalysts from sustainable wood fiber resources,thus promoting their practical applications in the field of electrochemical energy storage and conversion. 展开更多
关键词 ELECTROCATALYST HETEROJUNCTION oxygen evolution reaction Wood fiber SULFIDE
原文传递
Promoting oxygen evolution in proton exchange membrane water electrolysis:Controlling the oxidation state of electrochemically fabricated iridium-cobalt oxide catalysts
15
作者 Kyeong-Rim Yeo Hoyoung Kim +4 位作者 Liangliang Xu Seongbeen Kim Jong Hyun Jang Jinwoo Lee Soo-Kil Kim 《Journal of Energy Chemistry》 2025年第8期881-893,共13页
The harsh corrosive environment and sluggish oxygen evolution reaction(OER)kinetics at the anode of proton exchange membrane water electrolysis(PEMWE)cells warrant the use of excess Ir,thereby hindering large-scale in... The harsh corrosive environment and sluggish oxygen evolution reaction(OER)kinetics at the anode of proton exchange membrane water electrolysis(PEMWE)cells warrant the use of excess Ir,thereby hindering large-scale industrialization.To mitigate these issues,the present study aimed at fabricating a robust low-Ir-loading electrode via one-pot synthesis for efficient PEMWE.The pre-electrode was first prepared by alloying through the co-electrodeposition of Ir and Co,followed by the fabrication of Ir–Co oxide(Co-incorporated Ir oxide)electrodes via electrochemical dealloying.Two distinct dealloying techniques resulted in a modified valence state of Ir,and the effects of Co incorporation on the activity and stability of the OER catalysts were clarified using density functional theory(DFT)calculations,which offered theoretical insights into the reaction mechanism.While direct experimental validation of the oxygen evolution mechanism remains challenging under the current conditions,DFT-based theoretical modeling provided valuable perspectives on how Co incorporation could influence key steps in oxygen evolution catalysis.The Ir–Co oxide electrode with a selectively modulated valence state showed impressive performance with an overpotential of 258 mV at 10 mA cm^(−2),a low Tafel slope of 29.4 mV dec^(−1),and stability for 100 h at 100 mA cm^(−2)in the OER,in addition to a low overpotential of 16 mV at−10 mA cm^(−2)and high stability for 24 h in the hydrogen evolution reaction.The PEMWE cell equipped with the bifunctional Ir–Co oxide electrode as the anode and cathode exhibited outstanding performance(11.4 A cm^(−2)at 2.3 Vcell)despite having a low noble-metal content of 0.4 mgNM cm^(−2). 展开更多
关键词 ELECTROSYNTHESIS Oxidation state Ir-Co oxides oxygen evolution reaction Proton exchange membrane water ELECTROLYZER
在线阅读 下载PDF
Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis
16
作者 Jiawei Ge Xian Wang +4 位作者 Heyuan Tian Hao Wan Wei Ma Jiangying Qu Junjie Ge 《Chinese Chemical Letters》 2025年第5期156-171,共16页
Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determin... Proton exchange membrane water electrolysis(PEMWE)is a favorable technology for producing highpurity hydrogen under high current density using intermittent renewable energy.The performance of PEMWE is largely determined by the oxygen evolution reaction(OER),a sluggish four-electron reaction with a high reaction barrier.Nowadays,iridium(Ir)-based catalysts are the catalysts of choice for OER due to their excellent activity and durability in acidic solution.However,its high price and unsatisfactory electrochemical performance severely restrict the PEMWE’s practical application.In this review,we initiate by introducing the current OER reaction mechanisms,namely adsorbate evolution mechanism and lattice oxygen mechanism,with degradation mechanisms discussed.Optimized strategies in the preparation of advanced Ir-based catalysts are further introduced,with merits and potential problems also discussed.The parameters that determine the performance of PEMWE are then introduced,with unsolved issues and related outlooks summarized in the end. 展开更多
关键词 Iridium-based catalysts oxygen evolution reaction Proton exchange membrane water ELECTROLYSIS Degradation mechanism Optimized strategies Practical application
原文传递
Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction
17
作者 Weibin Shen Jie Liu +14 位作者 Gongyu Wen Shuai Li Binhui Yu Shuangyu Song Bojie Gong Rongyang Zhang Shibao Liu Hongpeng Wang Yao Wang Yujing Liu Huadong Yuan Jianming Luo Shihui Zou Xinyong Tao Jianwei Nai 《Chinese Chemical Letters》 2025年第7期636-640,共5页
Anion modification has been considered as a strategy to improve water splitting efficiency upon oxygen evolution reaction(OER).However,constructing a novel catalysis system with high catalytic activity and precise str... Anion modification has been considered as a strategy to improve water splitting efficiency upon oxygen evolution reaction(OER).However,constructing a novel catalysis system with high catalytic activity and precise structures is still a huge challenge due to the tedious procedure of precursor synthesis and anion selection.Here,a bimetallic(FeNi)nanowire self-assembled superstructure was synthesized using the Hoffmann rearrangement method,and then functionalized with four anions(P,Se,S,and O).Notably,the Fe_(3)Se_(4)/Ni_(3)Se_(4) catalyst shows a high conductivity,enhances the adsorption of intermediate products,accelerates the rate-determining step,and consequently results to improved electrocatalytic performance.Using the Fe_(3)Se_(4)/Ni_(3)Se_(4) catalyst exhibits enhanced performance with overpotential of 316mV at 10 mA/cm^(2),in stark contrast to Fe_(2) P/Ni_(2)P(357mV),Fe_(7)S_(8)/NiS(379 mV),and Fe_(3)O_(4)/NiO(464 mV).Moreover,the formation mechanism of superstructure and the relationship between electronegativities and electrocatalytic properties,are elucidated.Accordingly,this work provides an efficient approach to Hoffmann-type coordination polymer catalyst for oxygen evolution towards a near future. 展开更多
关键词 Self-assembly Anion modification Iron-nickel-based catalyst ELECTROCATALYSIS oxygen evolution reaction
原文传递
Lanthanum-based nanomaterials for oxygen evolution reaction
18
作者 Miao He Ping Wang +3 位作者 Jiasai Yao Yifei Li Senyao Meng Zhenxing Li 《Journal of Rare Earths》 2025年第6期1091-1099,I0001,共10页
Rare earth has a unique electronic structure and brings highly anticipated properties in light,electricity,heat and magnetism.Lanthanum is widely distributed among the rare earth elements and has a great potential for... Rare earth has a unique electronic structure and brings highly anticipated properties in light,electricity,heat and magnetism.Lanthanum is widely distributed among the rare earth elements and has a great potential for the electrocatalytic application.This paper reviews the common types and synthesis methods of lanthanum-based catalysts used in the electrocatalytic oxygen evolution reaction,and highlights the optimization of lanthanum-based catalysts.The electronic structure and active sites of the catalysts can be adjusted through atomic doping,interfacial modulation,and structural defects to enhance the OER.Further,the development of lanthanum-based catalyst is envisioned. 展开更多
关键词 Rare earths LANTHANUM oxygen evolution reaction Synthesis method ELECTROCATALYSIS
原文传递
Structure deformation of Ni-Fe-Se enables efficient oxygen evolution via RE atoms doping
19
作者 Hong-Rui Zhao Cheng-Zong Yuan +7 位作者 Cong-Hui Li Wen-Kai Zhao Fu-Ling Wu Lei Xin Hong Yin Shu-Feng Ye Xiao-Meng Zhang Yun-Fa Chen 《Rare Metals》 2025年第1期336-348,共13页
The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode compri... The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode comprising Ce-doped Ni-Fe-Se nanosheets grown on carbon cloth(Ni-Fe-Ce-Se/CC).This electrode was synthesized through a selenylation process,utilizing Ni-Fe-Ce-layered double hydroxide/carbon cloth(Ni-Fe-Ce LDH/CC)as the precursor.Notably,Ni-Fe-Ce-Se/CC electrode demonstrates remarkable performance,requiring a low overpotential of 300 mV to attain a current density of 100 mA·cm^(-2)under harsh alkaline conditions.Furthermore,the electrode exhibits exceptional stability during continuous operation for 100 h.Insight into the underlying mechanisms was gained through a combination of experimental results and density functional theory calculations.Our findings reveal that Ce doping induces crystal structure deformation in Ni-Fe-Se and enhances electron enrichment around Ni atoms.This structural modification optimizes the adsorption energy of oxygen-based intermediates on the Ni-Fe-Se surface.This work offers a valuable strategy for regulating the electron transfer and adsorption capabilities of transition metal selenide electrocatalysts through RE atoms doping,opening new avenues for enhanced electrocatalytic performance. 展开更多
关键词 Ce doping Structure deformation Ni-Fe-Se Electron transfer oxygen evolution
原文传递
Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution
20
作者 Jinqiang Gao Haifeng Yuan +7 位作者 Xinjuan Du Feng Dong Yu Zhou Shengnan Na Yanpeng Chen Mingyu Hu Mei Hong Shihe Yang 《Chinese Chemical Letters》 2025年第1期338-343,共6页
Rational design of viable routes to obtain efficient and stable oxygen evolution reaction(OER)electrocatalysts remains challenging,especially under industrial conditions.Here,we provide a solvent-steam assisted corros... Rational design of viable routes to obtain efficient and stable oxygen evolution reaction(OER)electrocatalysts remains challenging,especially under industrial conditions.Here,we provide a solvent-steam assisted corrosion engineering strategy to directly fabricate high-entropy NiF e-LDH with spatially resolved structural order.Ammonium fluoride in methanol steam enables the formation of nanosheets while Fe^(3+)effectively enhances their adhesion to the semi-sacrificial nickel-iron foam(NFF),thereby conjuring up a Ni Fe-LDH@NFF catalyst that exhibits remarkable adaptability to robust electrochemical activation yet with excellent stability.Comprehensive measurements reveal the in-situ formation of high-valance metal oxyhydroxide and the enhancement of adsorption-desorption process.Under the industrial condition(6 mol/L KOH,60℃),the Ni Fe-LDH@NFF exhibits excellent activity of 50 mA/cm^(2) at 1.55 V and high durability of over 120 h at 200 mA/cm^(2).We anticipate that the steam assisted strategy could promote the development of efficient non-precious electrocatalysts for hydrogen energy. 展开更多
关键词 High-entropy material Corrosion engineering NiFe-LDH oxygen evolution reaction Stability
原文传递
上一页 1 2 53 下一页 到第
使用帮助 返回顶部