期刊文献+
共找到17,661篇文章
< 1 2 250 >
每页显示 20 50 100
Microglial intervention in ischemic stroke:Roles and intervention strategies 被引量:3
1
作者 Cuiling Ji Lixinbei Sheng +4 位作者 Kaijun Han Ping Yuan Wei Li Lu Chen Yongyue Gao 《Neural Regeneration Research》 2026年第2期443-454,共12页
Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a... Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a stroke.Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes.This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies.Microglia exhibit a dynamic functional state,transitioning between pro-inflammatory(M1)and anti-inflammatory(M2)phenotypes.This duality is crucial in ischemic stroke,as it maintains a balance between neuroinflammation and tissue repair.Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier,while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration.Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B,mitogen-activated protein kinases,Janus kinase/signal transducer and activator of transcription,and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways.These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage.Potential therapeutic agents include natural compounds found in drugs such as minocycline,as well as traditional Chinese medicines.Drugs that target these regulatory mechanisms,such as small molecule inhibitors and components of traditional Chinese medicines,along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics,offer new therapeutic strategies and clinical translational potential for ischemic stroke. 展开更多
关键词 blood-brain barrier ischemic stroke MICROGLIA nerve regeneration NEUROINFLAMMATION NEUROPROTECTION oxidative stress polarization signaling pathways therapeutic strategies
暂未订购
Mechanistic insights of neuronal death and neuroprotective therapeutic approaches in stroke 被引量:2
2
作者 Chun Li Yuping Luo Siguang Li 《Neural Regeneration Research》 2026年第3期869-886,共18页
Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen... Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen,and essential nutrients to brain tissues.This deprivation triggers a cascade of cellular events that ultimately leads to neuronal death.Recent studies have clarified the multifactorial pathogenesis of ischemic stroke,highlighting the roles of energy failure,excitotoxicity,oxidative stress,neuroinflammation,and apoptosis.This review aimed to provide a comprehensive insight into the fundamental mechanisms driving neuronal death triggered by ischemia and to examine the progress of neuroprotective therapeutic approaches designed to mitigate neuronal loss and promote neurological recovery after a stroke.Additionally,we explored widely accepted findings regarding the potential pathways implicated in neuronal death during ischemic stroke,including the interplay of apoptosis,autophagy,pyroptosis,ferroptosis,and necrosis,which collectively influence neuronal fate.We also discussed advancements in neuroprotective therapeutics,encompassing a range of interventions from pharmacological modulation to stem cell-based therapies,aimed at reducing neuronal injury and enhancing functional recovery following ischemic stroke.Despite these advancements,challenges remain in translating mechanistic insights into effective clinical therapies.Although neuroprotective strategies have shown promise in preclinical models,their efficacy in human trials has been inconsistent,often due to the complex pathology of ischemic stroke and the timing of interventions.In conclusion,this review synthesizes mechanistic insights into the intricate interplay of molecular and cellular pathways driving neuronal death post-ischemia.It sheds light on cutting-edge advancements in potential neuroprotective therapeutics,underscores the promise of regenerative medicine,and offers a forward-looking perspective on potential clinical breakthroughs.The ongoing evolution of precision-targeted interventions is expected to significantly enhance preventative strategies and improve clinical outcomes. 展开更多
关键词 apoptosis cerebral infarction clinical trial inflammation ischemic stroke mitochondria neurons NEUROPROTECTION oxidative stress PATHOPHYSIOLOGY stem cells
暂未订购
Inherent potential of mitochondria-targeted interventions for chronic neurodegenerative diseases 被引量:2
3
作者 Min Zhou Min Zheng +8 位作者 Siyao Liang Maomao Li Jiarui Ma Shiyu Zhang Xinyao Song Yonglin Hu Yuhong Lyu Xingkun Ou Changwu Yue 《Neural Regeneration Research》 2026年第4期1409-1427,共19页
The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of th... The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of these diseases.This paper comprehensively reviews the relationship between mitochondrial dysfunction and chronic neurodegenerative diseases,aiming to uncover the potential use of targeted mitochondrial interventions as viable therapeutic options.We detail five targeted mitochondrial intervention strategies for chronic neurodegenerative diseases that act by promoting mitophagy,inhibiting mitochondrial fission,enhancing mitochondrial biogenesis,applying mitochondria-targeting antioxidants,and transplanting mitochondria.Each method has unique advantages and potential limitations,making them suitable for various therapeutic situations.Therapies that promote mitophagy or inhibit mitochondrial fission could be particularly effective in slowing disease progression,especially in the early stages.In contrast,those that enhance mitochondrial biogenesis and apply mitochondria-targeting antioxidants may offer great benefits during the middle stages of the disease by improving cellular antioxidant capacity and energy metabolism.Mitochondrial transplantation,while still experimental,holds great promise for restoring the function of damaged cells.Future research should focus on exploring the mechanisms and effects of these intervention strategies,particularly regarding their safety and efficacy in clinical settings.Additionally,the development of innovative mitochondria-targeting approaches,such as gene editing and nanotechnology,may provide new solutions for treating chronic neurodegenerative diseases.Implementing combined therapeutic strategies that integrate multiple intervention methods could also enhance treatment outcomes. 展开更多
关键词 Alzheimer's disease amyotrophic lateral sclerosis calcium homeostasis oxidative stress Huntington's disease mitochondrial dysfunction MITOCHONDRIA MITOPHAGY neurodegenerative diseases Parkinson's disease targeted therapy
暂未订购
Neuroinflammation strokes the brain:A double-edged sword in ischemic stroke 被引量:1
4
作者 Giorgia Lombardozzi Vanessa Castelli +2 位作者 Chiara Giorgi Annamaria Cimini Michele d’Angelo 《Neural Regeneration Research》 2026年第5期1715-1722,共8页
Stroke is a major cause of death and disability worldwide.It is characterized by a highly interconnected and multiphasic neuropathological cascade of events,in which an intense and protracted inflammatory response pla... Stroke is a major cause of death and disability worldwide.It is characterized by a highly interconnected and multiphasic neuropathological cascade of events,in which an intense and protracted inflammatory response plays a crucial role in worsening brain injury.Neuroinflammation,a key player in the pathophysiology of stroke,has a dual role.In the acute phase of stroke,neuroinflammation exacerbates brain injury,contributing to neuronal damage and blood–brain barrier disruption.This aspect of neuroinflammation is associated with poor neurological outcomes.Conversely,in the recovery phase following stroke,neuroinflammation facilitates brain repair processes,including neurogenesis,angiogenesis,and synaptic plasticity.The transition of neuroinflammation from a harmful to a reparative role is not well understood.Therefore,this review seeks to explore the mechanisms underlying this transition,with the goal of informing the development of therapeutic interventions that are both time-and context-specific.This review aims to elucidate the complex and dual role of neuroinflammation in stroke,highlighting the main actors,biomarkers of the disease,and potential therapeutic approaches. 展开更多
关键词 brain repair euinflammation inflammation ISCHEMIA mechanisms MICROGLIA oxidative stress stroke therapeutic approaches
暂未订购
Voltage-dependent anion channel 1 oligomerization regulates PANoptosis in retinal ischemia–reperfusion injury 被引量:1
5
作者 Hao Wan Xiaoxia Ban +6 位作者 Ye He Yandi Yang Ximin Hu Lei Shang Xinxing Wan Qi Zhang Kun Xiong 《Neural Regeneration Research》 2026年第4期1652-1664,共13页
Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,... Ischemia–reperfusion injury is a common pathophysiological mechanism in retinal degeneration.PANoptosis is a newly defined integral form of regulated cell death that combines the key features of pyroptosis,apoptosis,and necroptosis.Oligomerization of mitochondrial voltage-dependent anion channel 1 is an important pathological event in regulating cell death in retinal ischemia–reperfusion injury.However,its role in PANoptosis remains largely unknown.In this study,we demonstrated that voltage-dependent anion channel 1 oligomerization-mediated mitochondrial dysfunction was associated with PANoptosis in retinal ischemia–reperfusion injury.Inhibition of voltage-dependent anion channel 1 oligomerization suppressed mitochondrial dysfunction and PANoptosis in retinal cells subjected to ischemia–reperfusion injury.Mechanistically,mitochondria-derived reactive oxygen species played a central role in the voltagedependent anion channel 1-mediated regulation of PANoptosis by promoting PANoptosome assembly.Moreover,inhibiting voltage-dependent anion channel 1 oligomerization protected against PANoptosis in the retinas of rats subjected to ischemia–reperfusion injury.Overall,our findings reveal the critical role of voltage-dependent anion channel 1 oligomerization in regulating PANoptosis in retinal ischemia–reperfusion injury,highlighting voltage-dependent anion channel 1 as a promising therapeutic target. 展开更多
关键词 1-methyl-4-phenyl-1 2 3 6-TETRAHYDROPYRIDINE apoptosis ischemia–reperfusion injury mitochondrial dysfunction NECROPTOSIS oxidative stress PANoptosis PYROPTOSIS reactive oxygen species voltage-dependent anion channel 1
暂未订购
Effect of Substrate Micro-arc Oxidation Pretreatment on Microstructure and High-Temperature Oxidation Resistance of Si-Cr-Ti-Zr Coating on Ta12W Alloy
6
作者 Yang Fan Chang Jianxiu +2 位作者 Wang Xin Li Hongzhan Yan Peng 《稀有金属材料与工程》 北大核心 2026年第1期92-104,共13页
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre... To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating. 展开更多
关键词 tantalum-tungsten alloy silicide coating micro-arc oxidation reaction formation mechanism high-temperature oxidation
原文传递
Discovery of a Novel Ginseng Polysaccharide:Structure Characterization,in vitro Fermentability and Anti-oxidative Mechanism of Fermented Product via the Nrf2/HO-1 Pathway on Aβ-induced-PC 12 Cells
7
作者 DONG Binbin HOU Zong +3 位作者 ZHENG Zhong XING Junpeng LIU Zhiqiang LIU Shu 《高等学校化学学报》 北大核心 2026年第1期173-189,共17页
In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented... In this study,a novel polysaccharide GPA-G 2-H was derived from ginseng.Furthermore,the coherent study of its structural characteristics,fermented characteristics in vitro,as well as antioxidant mechanism of fermented product FGPA-G 2-H on Aβ25-35-induced PC 12 cells were explored.The structure of GPA-G 2-H was determined by means of zeta potential analysis,FTIR,HPLC,XRD,GC-MS and NMR.The backbone of GPA-G 2-H was mainly composed of→4)-α-D-Glcp-(1→with branches substituted at O-3.Notably,GPA-G 2-H was degraded by intestinal microbiota in vitro with total sugar content and pH value decreasing,and short-chain fatty acids(SCFAs)increasing.Moreover,GPA-G 2-H significantly promoted the proliferation of Lactobacillus,Muribaculaceae and Weissella,thereby making positive alterations in intestinal microbiota composition.Additionally,FGPA-G 2-H activated the Nrf 2/HO-1 signaling pathway,enhanced HO-1,NQO 1,SOD and GSH-Px,while inhabited Keap 1,MDA and LDH,which alleviated Aβ-induced oxidative stress in PC 12 cells.These provide a solid theoretical basis for the further development of ginseng polysaccharides as functional food and antioxidant drugs. 展开更多
关键词 Ginseng polysaccharide Structural characterization Intestinal microbiota FERMENTABILITY Oxidative stress
在线阅读 下载PDF
Effects of cerium oxide doping on performance characteristics of nickel-based black coatings
8
作者 QIN Zizhou CHEN Liyang +5 位作者 YANG Yumeng MAO Xifeng ZHU Benfeng GUO Weirong WEI Guoying ZHANG Luhan 《电镀与精饰》 北大核心 2026年第1期25-38,共14页
Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon ... Black nickel coatings have emerged as a research hotspot in materials science due to their excellent performance and broad application prospects.In this study,nickel-based black coatings were fabricated on low-carbon steel substrates via photo-assisted electrodeposition.A systematic investigation was conducted on the effects of cerium ion concentration and nano-ceria(CeO_(2))particle content in the electrolyte on the coating properties,along with an analysis of the temporal evolution of coating’s corrosion resistance.When the cerium ion concentration in the electrolyte was 0.05 mol/L,the coating exhibited a uniform black appearance with a light absorption rate of 95%,an emissivity of 0.87,maximum impedance,and the lowest corrosion tendency,demonstrating optimal comprehensive performance.The coating prepared with a nano-ceria concentration of 6 g/L in the electrolyte exhibited an emissivity of 0.9,achieved a 5B adhesion grade(ASTM D3359-09),and demonstrated a one-order-of-magnitude reduction in corrosion current density compared to coatings fabricated without nano-ceria in the electrolyte.With prolonged storage time,the coating's impedance slightly increased,leading to improved corrosion resistance. 展开更多
关键词 nickel-based coatings black coatings Ce oxide protective properties
在线阅读 下载PDF
Corrigendum
9
《Neural Regeneration Research》 2026年第3期922-922,共1页
Corrigendum:Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway https://doi.org/10.4103/NRR.NRR-D-25-00562 In the article titled“Epalrestat protect... Corrigendum:Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway https://doi.org/10.4103/NRR.NRR-D-25-00562 In the article titled“Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway,”published on pages 345-351 in Issue 2,Volume 11 of Neural Regeneration Research(Li et al.,2016),the Western blot bands in Figure 2A are incorrect. 展开更多
关键词 western blot bands diabetic peripheral neuropathy alleviating oxidative stress oxidative stress polyol pathway EPALRESTAT
暂未订购
Neuroprotection provided by polyphenols and flavonoids in photoreceptor degenerative diseases
10
作者 Théo Henrique de Lima-Vasconcellos Gabrieli Bovi dos Santos +4 位作者 Marília Inês Móvio Giovanna Klemenc Donnici Gabriela Maria Badin Daniele Ribeiro de Araujo Alexandre Hiroaki Kihara 《Neural Regeneration Research》 2026年第3期908-922,共15页
The intricate landscape of neurodegenerative diseases complicates the search for effective therapeutic approaches.Photoreceptor degeneration,the common endpoint in various retinal diseases,including retinitis pigmento... The intricate landscape of neurodegenerative diseases complicates the search for effective therapeutic approaches.Photoreceptor degeneration,the common endpoint in various retinal diseases,including retinitis pigmentosa and age-related macular degeneration,leads to vision loss or blindness.While primary cell death is driven by genetic mutations,oxidative stress,and neuroinflammation,additional mechanisms contribute to disease progression.In retinitis pigmentosa,a multitude of genetic alterations can trigger the degeneration of photoreceptors,while other retinopathies,such as agerelated macular degeneration,are initiated by combinations of environmental factors,such as diet,smoking,and hypertension,with genetic predispositions.Nutraceutical therapies,which blend the principles of nutrition and pharmaceuticals,aim to harness the health benefits of bioactive compounds for therapeutic applications.These compounds generally possess multi-target effects.Polyphenols and flavonoids,secondary plant metabolites abundant in plant-based foods,are known for their antioxidant,neuroprotective,and anti-inflammatory properties.This review focuses on the potential of polyphenols and flavonoids as nutraceuticals to treat neurodegenerative diseases such as retinitis pigmentosa.Furthermore,the importance of developing reliable delivery methods to enhance the bioavailability and therapeutic efficacy of these compounds will be discussed.By combining nutraceuticals with other emerging therapies,such as genetic and cell-based treatments,it is possible to offer a more comprehensive approach to treating retinal degenerative diseases.These advancements could lead to a viable and accessible option,improving the quality of life for patients with retinal diseases. 展开更多
关键词 FLAVONOIDS NEUROINFLAMMATION nutraceutical therapy oxidative stress retinitis pigmentosa
暂未订购
Determining the Effect of Grain Size on the Microstructure and Oxidation of Nuclear Graphite
11
作者 Xu Qiao Xinlei Cao +6 位作者 Yuying Zhang Wei Chen Chunzhen Yang Zhengcao Li Xing Zhou Ke Shen Zhou Zhou 《Carbon Energy》 2026年第1期138-152,共15页
Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,... Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors. 展开更多
关键词 DIFFUSION nuclear graphite OXIDATION pore structure reaction rate
在线阅读 下载PDF
Neuroglobin:A promising candidate to treat neurological diseases
12
作者 Ivan Millan Yanez Isabel Torres-Cuevas Marisol Corral-Debrinski 《Neural Regeneration Research》 2026年第4期1292-1303,共12页
Neurodevelopmental and neurodegenerative illnesses constitute a global health issue and a foremost economic burden since they are a large cause of incapacity and death worldwide.Altogether,the burden of neurological d... Neurodevelopmental and neurodegenerative illnesses constitute a global health issue and a foremost economic burden since they are a large cause of incapacity and death worldwide.Altogether,the burden of neurological disorders has increased considerably over the past 30 years because of population aging.Overall,neurological diseases significantly impair cognitive and motor functions and their incidence will increase as societies age and the world's population continues to grow.Autism spectrum disorder,motor neuron disease,encephalopathy,epilepsy,stroke,ataxia,Alzheimer's disease,amyotrophic lateral sclerosis,Huntington's disease,and Parkinson's disease represent a non-exhaustive list of neurological illnesses.These affections are due to perturbations in cellular homeostasis leading to the progressive injury and death of neurons in the nervous system.Among the common features of neurological handicaps,we find protein aggregation,oxidative stress,neuroinflammation,and mitochondrial impairment in the target tissues,e.g.,the brain,cerebellum,and spinal cord.The high energy requirements of neurons and their inability to produce sufficient adenosine triphosphate by glycolysis,are responsible for their dependence on functional mitochondria for their integrity.Reactive oxygen species,produced along with the respiration process within mitochondria,can lead to oxidative stress,which compromises neuronal survival.Besides having an essential role in energy production and oxidative stress,mitochondria are indispensable for an array of cellular processes,such as amino acid metabolism,iron-sulfur cluster biosynthesis,calcium homeostasis,intrinsic programmed cell death(apoptosis),and intraorganellar signaling.Despite the progress made in the last decades in the understanding of a growing number of genetic and molecular causes of central nervous diseases,therapies that are effective to diminish or halt neuronal dysfunction/death are rare.Given the genetic complexity responsible for neurological disorders,the development of neuroprotective strategies seeking to preserve mitochondrial homeostasis is a realistic challenge to lastingly diminish the harmful evolution of these pathologies and so to recover quality of life.A promising candidate is the neuroglobin,a globin superfamily member of 151 amino acids,which is found at high levels in the brain,the eye,and the cerebellum.The protein,which localizes to mitochondria,is involved in electron transfer,oxygen storage and defence against oxidative stress;hence,possessing neuroprotective properties.This review surveys up-to-date knowledge and emphasizes on existing investigations regarding neuroglobin physiological functions,which remain since its discovery in 2000 under intense debate and the possibility of using neuroglobin either by gene therapy or its direct delivery into the brain to treat neurological disorders. 展开更多
关键词 ATAXIA brain CEREBELLUM gene therapy mitochondria NEUROGLOBIN neurological disease NEUROPROTECTION oxidative stress
暂未订购
Systematic review of mitochondrial dysfunction and oxidative stress in aging:A focus on neuromuscular junctions
13
作者 Senlin Chai Ning Zhang +8 位作者 Can Cui Zhengyuan Bao Qianjin Wang Wujian Lin Ronald Man Yeung Wong Sheung Wai Law Rebecca Schönmehl Christoph Brochhausen Wing Hoi Cheung 《Neural Regeneration Research》 2026年第5期1947-1960,共14页
Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pa... Mitochondrial dysfunction and oxidative stress are widely regarded as primary drivers of aging and are associated with several neurodegenerative diseases.The degeneration of motor neurons during aging is a critical pathological factor contributing to the progression of sarcopenia.However,the morphological and functional changes in mitochondria and their interplay in the degeneration of the neuromuscular junction during aging remain poorly understood.A defined systematic search of the Pub Med,Web of Science and Embase databases(last accessed on October 30,2024)was conducted with search terms including'mitochondria','aging'and'NMJ'.Clinical and preclinical studies of mitochondrial dysfunction and neuromuscular junction degeneration during aging.Twentyseven studies were included in this systematic review.This systematic review provides a summary of morphological,functional and biological changes in neuromuscular junction,mitochondrial morphology,biosynthesis,respiratory chain function,and mitophagy during aging.We focus on the interactions and mechanisms underlying the relationship between mitochondria and neuromuscular junctions during aging.Aging is characterized by significant reductions in mitochondrial fusion/fission cycles,biosynthesis,and mitochondrial quality control,which may lead to neuromuscular junction dysfunction,denervation and poor physical performance.Motor nerve terminals that exhibit redox sensitivity are among the first to exhibit abnormalities,ultimately leading to an early decline in muscle strength through impaired neuromuscular junction transmission function.Parg coactivator 1 alpha is a crucial molecule that regulates mitochondrial biogenesis and modulates various pathways,including the mitochondrial respiratory chain,energy deficiency,oxidative stress,and inflammation.Mitochondrial dysfunction is correlated with neuromuscular junction denervation and acetylcholine receptor fragmentation,resulting in muscle atrophy and a decrease in strength during aging.Physical therapy,pharmacotherapy,and gene therapy can alleviate the structural degeneration and functional deterioration of neuromuscular junction by restoring mitochondrial function.Therefore,mitochondria are considered potential targets for preserving neuromuscular junction morphology and function during aging to treat sarcopenia. 展开更多
关键词 AGING mitochondrial dysfunction neuromuscular junction oxidative stress SARCOPENIA systematic review
暂未订购
Effects of functional microorganisms and environmental factors on CO_(2) and CH_(4) emissions in a typical floodplain lake system
14
作者 Jiajia Li Fan Wu +1 位作者 Xianrui Ha Yang Gao 《Journal of Environmental Sciences》 2026年第1期312-321,共10页
Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_... Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_(4) emissions between different lakes.However,the carbon emissions and their influencing factors of different areas within a single lake remain poorly understood.Accordingly,this study investigates CO_(2) and CH_(4) emission hetero-geneity in a large floodplain lake system and distribution characteristics of associated functional microorganisms.Findings show that mean CO_(2) and CH_(4) flux values in the sub lake area were 62.03±24.21 mg/(m2·day)and 5.97±3.2μg/(m2·day),which were greater by factors of 1.78 and 2.96 compared to the water channel and the main lake area,respectively.The alpha diversity of methanogens in the sub lake area was lower than that in the main lake and water channel areas.The abundance of methanogens in bottom water layer was higher compared with the middle and surface layers.Conversely,the abundance of methane(CH_(4))-oxidizing bacteria in the surface layer was higher than that in the bottom layer.Additionally,the composition of methanogen and CH_(4)-oxidizing bacterial community,chlorophyll a(Chl-a),pH,total phosphorus(TP)and dissolved organic carbon(DOC)con-tent constituted the dominate driving factors affecting lake C emissions.Results from this study can be used to improve our understanding of lake spatial heterogeneous of CO_(2) and CH_(4) emission and the driving mechanisms within floodplain lakes under the coupling effects of functional C microorganisms and environmental factors. 展开更多
关键词 Carbon emission Flux METHANOGENS Methane oxidizers Carbon cycle Poyang Lake
原文传递
Molecular hydrogen therapy in musculoskeletal conditions:An evidence-based review and critical analysis
15
作者 Naveen Jeyaraman Madhan Jeyaraman +3 位作者 Swaminathan Ramasubramanian Shrideavi Murugan Arulkumar Nallakumarasamy Sathish Muthu 《World Journal of Orthopedics》 2026年第1期40-56,共17页
Molecular hydrogen(H2)demonstrates selective antioxidant and anti-inflammatory properties with therapeutic potential across musculoskeletal conditions including osteoarthritis,rheumatoid arthritis,exercise-induced mus... Molecular hydrogen(H2)demonstrates selective antioxidant and anti-inflammatory properties with therapeutic potential across musculoskeletal conditions including osteoarthritis,rheumatoid arthritis,exercise-induced muscle damage,chronic pain syndromes,tendinopathies,and muscle atrophy.This review critically evaluates preclinical and clinical evidence for H2 therapy and identifies research gaps.A comprehensive search of PubMed,EMBASE,and Cochrane Library(up to April 2025)yielded 45 eligible studies:25 preclinical and 20 clinical trials.Preclinical models consistently showed reductions in reactive oxygen species,inflammatory cytokines,and improved cell viability.Clinical trials reported symptomatic relief in osteoarthritis,decreased Disease Activity Score 28 in rheumatoid arthritis,and accelerated clearance of muscle damage markers.Delivery methods varied-hydrogen-rich water,gas inhalation,and saline infusion-hindering direct comparison.Mechanistic biomarkers were inconsistently reported,limiting understanding of target engagement.Common limitations included small sample sizes,short durations,and protocol heterogeneity.Despite these constraints,findings suggest H2 may serve as a promising adjunctive therapy via antioxidant,anti-inflammatory,and cytoprotective mechanisms.Future research should prioritize standardized delivery protocols,robust mechanistic endpoints,and longer-term randomized trials to validate clinical efficacy and optimize therapeutic strategies. 展开更多
关键词 Molecular hydrogen Musculoskeletal disorders Oxidative stress ANTI-INFLAMMATION Clinical evidence
暂未订购
High-Entropy Oxide Memristors for Neuromorphic Computing:From Material Engineering to Functional Integration
16
作者 Jia‑Li Yang Xin‑Gui Tang +4 位作者 Xuan Gu Qi‑Jun Sun Zhen‑Hua Tang Wen‑Hua Li Yan-Ping Jiang 《Nano-Micro Letters》 2026年第2期138-169,共32页
High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic f... High-entropy oxides(HEOs)have emerged as a promising class of memristive materials,characterized by entropy-stabilized crystal structures,multivalent cation coordination,and tunable defect landscapes.These intrinsic features enable forming-free resistive switching,multilevel conductance modulation,and synaptic plasticity,making HEOs attractive for neuromorphic computing.This review outlines recent progress in HEO-based memristors across materials engineering,switching mechanisms,and synaptic emulation.Particular attention is given to vacancy migration,phase transitions,and valence-state dynamics—mechanisms that underlie the switching behaviors observed in both amorphous and crystalline systems.Their relevance to neuromorphic functions such as short-term plasticity and spike-timing-dependent learning is also examined.While encouraging results have been achieved at the device level,challenges remain in conductance precision,variability control,and scalable integration.Addressing these demands a concerted effort across materials design,interface optimization,and task-aware modeling.With such integration,HEO memristors offer a compelling pathway toward energy-efficient and adaptable brain-inspired electronics. 展开更多
关键词 High-entropy oxides MEMRISTORS Neuromorphic computing Configurational entropy Resistive switching
在线阅读 下载PDF
Improving Efficiency of Light Pressure Electric Generator Using Graphene Oxide Nanospacer Between Ag Nanoparticles
17
作者 Ha Young Lee Sung-Hyun Kim +3 位作者 Sun-Lyeong Hwang Hyung Soo Ahn Heedae Kim Sam Nyung Yi 《Carbon Energy》 2026年第1期38-47,共10页
Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic struct... Improving device efficiency is fundamental for advancing energy harvesting technology,particularly in systems designed to convert light energy into electrical output.In our previous studies,we developed a basic structure light pressure electric generator(Basic-LPEG),which utilized a layered configuration of Ag/Pb(Zr,Ti)O_(3)(PZT)/Pt/GaAs to generate electricity based on light-induced pressure on the PZT.In this study,we sought to enhance the performance of this Basic-LPEG by introducing Ag nanoparticles/graphene oxide(AgNPs/GO)composite units(NP-LPEG),creating upgraded harvesting device.Specifically,by depositing the AgNPs/GO units twice onto the Basic-LPEG,we observed an increase in output voltage and current from 241 mV and 3.1μA to 310 mV and 9.3μA,respectively,under a solar simulator.The increase in electrical output directly correlated with the intensity of the light pressure impacting the PZT,as well as matched the Raman measurements,finite-difference time-domain simulations,and COMSOL Multiphysics Simulation.Experimental data revealed that the enhancement in electrical output was proportional to the number of hot spots generated between Ag nanoparticles,where the electric field experienced substantial amplification.These results underline the effectiveness of AgNPs/GO units in boosting the light-induced electric generation capacity,thereby providing a promising pathway for high-efficiency energy harvesting devices. 展开更多
关键词 Ag nanoparticles energy harvesting graphene oxide light pressure PIEZOELECTRIC
在线阅读 下载PDF
Degradation of leachate and high concentration emerging pollutant tetracycline through electro oxidation
18
作者 Siyi Li Qiaona Xie +3 位作者 Mingdi Yang Ningrui Wu Yiting Lian Chengran Fang 《Journal of Environmental Sciences》 2026年第1期142-153,共12页
In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti... In this work,we constructed a three-dimensional electrochemical system(3D-ECO),which included the cathode and anode electrode plates,as well as the screening of three-dimensional particle electrodes and parameter opti-mization,for the degradation of landfill leachate(LL)containing elevated levels of tetracycline(TC),and explored its mechanism of action.Firstly,titanium-based ruthenium-iridium(Ti/RuO_(2)-IrO_(2)),titanium-based ruthenium-iridium-platinum(Ti/Pt-RuO_(2)-IrO_(2)),and titanium-based tin-antimony(Ti/SnO_(2)-Sb_(2)O_(3))were employed as an-odes in the electrocatalytic oxidation system,with titanium and stainless steel plates serving as cathodes,to construct the optimal two-dimensional electrocatalytic oxidation system(2D-ECO)through cross-comparison ex-periments.Subsequently,using granular activated carbon(GAC),coconut shell biochar(CBC),walnut shell carbon(WBC),and bamboo charcoal(BBC)as particle electrodes,a 3D-ECO system was developed.The influence of var-ious operational parameters on treating TC-containing LL was investigated.The optimal operating parameters obtained from the study was:pH=5,current density of 30 mA/cm^(2),particle dosage of 7 g/L,particle size ranging from 1.70 to 2.00 mm,and electrode spacing of 4 cm.Under these conditions,the COD removal rate of 3D-ECO within three hours was 90.25%,the TC removal rate was 72.41%,and the NH_(3)-N removal rate was 39.52%.The removal of TC followed a pseudo-first-order kinetic model.Additionally,degradation mechanisms were elucidated through electron paramagnetic resonance(EPR)spectrometer and Tert-Butanol(TBA)quenching experiments,indicating that the degradation primarily occurred through a non-radical(1O_(2))pathway.This re-search offers a comprehensive analysis of the simultaneous breakdown of intricate LL matrices and TC,enhancing our comprehension of the degradation processes and underlying mechanisms. 展开更多
关键词 Particle electrodes TETRACYCLINE Landfill leachate Three-dimensional electrocatalytic oxidation Degradation mechanism
原文传递
Drug delivery strategies for neuroprotective therapy in ischemic stroke:Application of nanotechnology
19
作者 Zhan Jiang Qi Chen Huanghao Yang 《Neural Regeneration Research》 2026年第5期1793-1808,共16页
The mechanisms underlying the pathophysiology of ischemic stroke are complex and multifactorial and include excitotoxicity,oxidative stress,inflammatory responses,and blood–brain barrier disruption.While vascular rec... The mechanisms underlying the pathophysiology of ischemic stroke are complex and multifactorial and include excitotoxicity,oxidative stress,inflammatory responses,and blood–brain barrier disruption.While vascular recanalization treatments such as thrombolysis and mechanical thrombectomy have achieved some success,reperfusion injury remains a significant contributor to the exacerbation of brain injury.This emphasizes the need for developing neuroprotective strategies to mitigate this type of injury.The purpose of this review was to examine the application of nanotechnology in the treatment of ischemic stroke,covering research progress in nanoparticlebased drug delivery,targeted therapy,and antioxidant and anti-inflammatory applications.Nanobased drug delivery systems offer several advantages compared to traditional therapies,including enhanced blood–brain barrier penetration,prolonged drug circulation time,improved drug stability,and targeted delivery.For example,inorganic nanoparticles,such as those based on CeO_(2),have been widely studied for their strong antioxidant capabilities.Biomimetic nanoparticles,such as those coated with cell membranes,have garnered significant attention owing to their excellent biocompatibility and targeting abilities.Nanoparticles can be used to deliver a wide range of neuroprotective agents,such as antioxidants(e.g.,edaravone),anti-inflammatory drugs(e.g.,curcumin),and neurotrophic factors.Nanotechnology significantly enhances the efficacy of these drugs while minimizing adverse reactions.Although nanotechnology has demonstrated great potential in animal studies,its clinical application still faces several challenges,including the long-term safety of nanoparticles,the feasibility of large-scale production,quality control,and the ability to predict therapeutic effects in humans.In summary,nanotechnology holds significant promise for the treatment of ischemic stroke.Future research should focus on further exploring the mechanisms of action of nanoparticles,developing multifunctional nanoparticles,and validating their safety and efficacy through rigorous clinical trials.Moreover,interdisciplinary collaboration is essential for advancing the use of nanotechnology in stroke treatment. 展开更多
关键词 drug delivery EXCITOTOXICITY ischemic stroke ISCHEMIA-REPERFUSION nanoparticles nerve regeneration NEUROINFLAMMATION NEUROPROTECTION oxidative stress PATHOPHYSIOLOGY
暂未订购
Deterioration and Pore Structure Evolution of GO Modified Polymer Cement Mortar under Salt-freeze-thaw Coupling Effects
20
作者 ZHAO Xinyuan WEI Zhiqiang +3 位作者 QIAO Hongxia LI Shaofei CAO Hui XI Lingling 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期234-246,共13页
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g... To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively. 展开更多
关键词 graphene oxide polymer cement mortar pore structure fractal dimension
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部