Most existing overlay multicast approaches refuse to consider any network layer support no matter whether it is available or not. This design principle greatly increases the complexity of the routing algorithms and ma...Most existing overlay multicast approaches refuse to consider any network layer support no matter whether it is available or not. This design principle greatly increases the complexity of the routing algorithms and makes the overlay topologies incompatible with the underlying network. To address these issues, topology-aware overlay multicast over IP multicast networks (TOMIMN) was proposed as a novel overlay multicast protocol, which exploits the cooperation between end-hosts and IP multicast routers to construct a topology-aware overlay tree. Through a little modification to protocol independent multicast sparse mode (PIM-SM), a multicast router is able to receive registration from nearby group members and redirect passing-by join requests to them. Due to the multicast router's support, TOMIMN organizes its group members into an overlay multicast tree efficiently, which matches the physical network topology well.展开更多
Due to the difficulty of deploying Internet protocol (IP) multicast on the Internet on a large scale, overlay multicast has been considered as a promising alternative to develop the multicast communication in recent...Due to the difficulty of deploying Internet protocol (IP) multicast on the Internet on a large scale, overlay multicast has been considered as a promising alternative to develop the multicast communication in recent years. However, the existing overlay multicast solutions suffer from high costs to maintain the state information of nodes in the multicast forwarding tree. A stateless overlay multicast scheme is proposed, in which the multicast routing information is encoded by a bloom filter (BF) and encapsulated into the packet header without any need for maintaining the multicast forwarding tree. Our scheme leverages the node heterogeneity and proximity information in the physical topology and hierarchically constructs the transit-stub overlay topology by assigning geometric coordinates to all overlay nodes. More importantly, the scheme uses BF technology to identify the nodes and links of the multicast forwarding tree, which improves the forwarding efficiency and decreases the false-positive forwarding loop. The analytical and simulation results show that the proposal can achieve high forwarding efficiency and good scalability.展开更多
文摘Most existing overlay multicast approaches refuse to consider any network layer support no matter whether it is available or not. This design principle greatly increases the complexity of the routing algorithms and makes the overlay topologies incompatible with the underlying network. To address these issues, topology-aware overlay multicast over IP multicast networks (TOMIMN) was proposed as a novel overlay multicast protocol, which exploits the cooperation between end-hosts and IP multicast routers to construct a topology-aware overlay tree. Through a little modification to protocol independent multicast sparse mode (PIM-SM), a multicast router is able to receive registration from nearby group members and redirect passing-by join requests to them. Due to the multicast router's support, TOMIMN organizes its group members into an overlay multicast tree efficiently, which matches the physical network topology well.
基金supported by the National Natural Science Foundation of China (62673200)Foundation of Ludong University in China (LB2016019, LB2016017)Natural Science Foundation of Shandong Province (ZR2017MF062)
文摘Due to the difficulty of deploying Internet protocol (IP) multicast on the Internet on a large scale, overlay multicast has been considered as a promising alternative to develop the multicast communication in recent years. However, the existing overlay multicast solutions suffer from high costs to maintain the state information of nodes in the multicast forwarding tree. A stateless overlay multicast scheme is proposed, in which the multicast routing information is encoded by a bloom filter (BF) and encapsulated into the packet header without any need for maintaining the multicast forwarding tree. Our scheme leverages the node heterogeneity and proximity information in the physical topology and hierarchically constructs the transit-stub overlay topology by assigning geometric coordinates to all overlay nodes. More importantly, the scheme uses BF technology to identify the nodes and links of the multicast forwarding tree, which improves the forwarding efficiency and decreases the false-positive forwarding loop. The analytical and simulation results show that the proposal can achieve high forwarding efficiency and good scalability.