The conventional time function of electromechanical relays is hard to coordinate with other relays. In order to promote the application of inverse-time overcurrent relays, a new time function for microprocessor-type r...The conventional time function of electromechanical relays is hard to coordinate with other relays. In order to promote the application of inverse-time overcurrent relays, a new time function for microprocessor-type relay is proposed. The setting of the trip time for this relay is performed by determining the shortest trip time and the longest trip time, respectively. The results of analysis show that with the new time function, the inverse-time overcurrent relay is easy to coordinate with other relays and has a comparatively shorter trip time, and that the fault happens in the protective zone.展开更多
The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integra...The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integrated protection equipment, OC protection setting table must be converted to be a microcomputer algorithm. This paper first intro-duced a method of the fitting OC protection setting table to be OC relay inverse time characteristics equations using MATLAB least square fitting. On the basis of analyzing these fitting equations, a notion, “integral limit rate” was put forward initially and a OC in-verse time digital algorithm was developed. MATLAB simulation results and a digital signal processor (DSP) based digital integrated protection equipment running test indicate that this algorithm has less calculation amount, less taking up memory, high control accuracy, implements the no-grade setting of OC delay values, suits for all kinds of low-middle mi-crocomputer system implementation.展开更多
Fault current magnitude in a microgrid depends upon its mode of operation,namely,grid-connected mode or islanded mode.Depending on the type of fault in a given mode,separate protection schemes are generally employed.W...Fault current magnitude in a microgrid depends upon its mode of operation,namely,grid-connected mode or islanded mode.Depending on the type of fault in a given mode,separate protection schemes are generally employed.With the change in microgrid operating mode,the protection scheme needs to be modified which is uneconomical and time inefficient.In this paper,a novel optimal protection coordination scheme is proposed,one which enables a common optimal relay setting which is valid in both operating modes of the microgrid.In this con-text,a common optimal protection scheme is introduced for dual setting directional overcurrent relays(DOCRs)using a combination of various standard relay characteristics.Along with the two variables,i.e.,time multiplier setting(TMS)and plug setting(PS)for conventional directional overcurrent relay,dual setting DOCRs are augmented with a third variable of relay characteristics identifier(RCI),which is responsible for selecting optimal relay characteristics from the standard relay characteristics according to the IEC-60255 standard.The relay coordination problem is formulated as a mixed-integer nonlinear programming(MINLP)problem,and the settings of relays are optimally determined using the genetic algorithm(GA)and the grey wolf optimization(GWO)algorithm.To validate the superiority of the pro-posed protection scheme,the distribution parts of the IEEE-14 and IEEE-30 bus benchmark systems are considered.展开更多
Heavy fault currents flow in the event of fault at the loads connected in distribution system. To protect these loads, circuit breakers and relays are required at appropriate places with proper coordination between th...Heavy fault currents flow in the event of fault at the loads connected in distribution system. To protect these loads, circuit breakers and relays are required at appropriate places with proper coordination between them. This research paper focuses on finding optimum relay setting required for minimum time to interrupt power supply to avoid miscoordination in operation of relays and also investigates effect on time multiplier settings (TMS) of directional overcurrent relays in a system with combined overhead lines-underground cables. Linear programming problem (LPP) approach is used for optimization. It is interesting to know the quantitative variations in TMS as the underground cables have different characteristics than overhead lines.展开更多
The optimal setting of directional overcurrent relays(DOCRs)ensures the fault detection and clearing in the minimum possible operation time.Directional protective relaying is carried out to coordinate relay settings i...The optimal setting of directional overcurrent relays(DOCRs)ensures the fault detection and clearing in the minimum possible operation time.Directional protective relaying is carried out to coordinate relay settings in a meshed network in the presence of distributed generation.The main goal of DOCR coordination is to find the optimal time dial setting(TDS)and pickup multiplier setting(PMS)to reach the minimum total operation time of all primary relays in the presence of coordination constraints.Due to the complexity of mixed integer non-linear programming(MINLP)problem,imperialistic competition algorithm(ICA)as a powerful evolutionary algorithm is used to solve the coordination problem of DOCRs.The proposed DOCR coordination formulation is implemented in three different test cases.The results are compared with the standard branch-and-bound algorithm and other meta-heuristic optimization algorithms,which demonstrates the effectiveness of the proposed algorithm.展开更多
Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this...Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.展开更多
Due to the swift expansion and the deployment of distributed generation, protection systems of active distribution networks are more expected to be fast. In loop-based active distribution networks, directional overcur...Due to the swift expansion and the deployment of distributed generation, protection systems of active distribution networks are more expected to be fast. In loop-based active distribution networks, directional overcurrent relays(DOCRs) are caught in different chains. These chains stand as the severe obstacle to follow fast-response protection, which remains a significant challenge. In this paper, to overcome this challenge, a fast protection scheme is proposed to break the chains in the corresponding loops by deploying auxiliary DOCRs. The most effective constraint associated with each chain is relaxed during the coordination process. Then, the auxiliary relays are employed to play the backup roles instead of conventional backup relays in the relaxed constraints. To avoid the misoperation of relays in the proposed scheme, low bandwidth communication links are suitably employed. Furthermore, the auxiliary relays are optimally placed and adjusted. The proposed approach demonstrates a mixed-integer nonlinear programming model which is tackled by particle swarm optimization(PSO) algorithm. Detailed simulation studies are carried out to verify the performance of the proposed approach.展开更多
This paper summarizes some useful concepts about the coordination of directional overcurrent protections.The following key topics are described:the analysis of systems in a ring configuration and only one source of sh...This paper summarizes some useful concepts about the coordination of directional overcurrent protections.The following key topics are described:the analysis of systems in a ring configuration and only one source of short-circuit currents;the impossibility of obtaining selectivity for all the possible system configurations with multiple sources;the need for inverse functions in order to obtain selectivity in systems with multiple sources;the coordination with protections for radial loads;the coordination between instantaneous and delayed functions;the considerations to select the pickup values;the influence of contributions from motors to short circuit currents;the transient configurations due to sequential trips at both line ends;the influence of dynamic behavior of overcurrent functions;the influence of stability constraints;other specific considerations for ground functions;some specific considerations for systems with distributed generation.A summary of these points and their effect on the coordination of directional overcurrent protections is not available in the current literature.This novel description should facilitate the inclusion of these key points in research and coordination studies related to these protective functions.展开更多
The advancement accomplished in power systems over the last decade has enabled the extensive integration of renewable energy sources.It has resulted in enhanced efficiency and reliability of the system by meeting the ...The advancement accomplished in power systems over the last decade has enabled the extensive integration of renewable energy sources.It has resulted in enhanced efficiency and reliability of the system by meeting the load demand from small,local sources known as distributed generators(DGs).Consequently,this has led to the concept of microgrids(MGs).Nevertheless,there are operational challenges such as bidirectional power flow,fluctuations in fault current level,and protection issues such as blinding,false tripping,and unintentional islanding.Synchronous generator-based distributed generators(SGDGs)may experience a loss of synchronism across the generators due to undesirable events,such as abrupt changes in demand or faults.Similarly,voltage instability concerns may arise with inverter-based distributed generators(IDGs).This paper provides a thorough review of the concepts of critical clearing time(CCT)and grid code compliance in relation to SGDGs and IDGs,respectively.It provides a comprehensive analysis of the existing literature on several protection strategies used for reducing the adverse effects of DG integration.It highlights the characteristics,benefits,and constraints of these schemes.Finally,this paper presents the conclusion and outlines the potential areas for future study in the field of protective relaying methods,specifically addressing the issues posed by current power systems.展开更多
基金TheNationalNaturalScienceFoundationofChina (No .6 9774 0 2 4 )
文摘The conventional time function of electromechanical relays is hard to coordinate with other relays. In order to promote the application of inverse-time overcurrent relays, a new time function for microprocessor-type relay is proposed. The setting of the trip time for this relay is performed by determining the shortest trip time and the longest trip time, respectively. The results of analysis show that with the new time function, the inverse-time overcurrent relay is easy to coordinate with other relays and has a comparatively shorter trip time, and that the fault happens in the protective zone.
文摘The overcurrent (OC) protection limit is set usually accorging to a OC protection setting table on digital integrated protection equipment in mine explode isolation high voltage (HV) vacuum switch. For digital integrated protection equipment, OC protection setting table must be converted to be a microcomputer algorithm. This paper first intro-duced a method of the fitting OC protection setting table to be OC relay inverse time characteristics equations using MATLAB least square fitting. On the basis of analyzing these fitting equations, a notion, “integral limit rate” was put forward initially and a OC in-verse time digital algorithm was developed. MATLAB simulation results and a digital signal processor (DSP) based digital integrated protection equipment running test indicate that this algorithm has less calculation amount, less taking up memory, high control accuracy, implements the no-grade setting of OC delay values, suits for all kinds of low-middle mi-crocomputer system implementation.
文摘Fault current magnitude in a microgrid depends upon its mode of operation,namely,grid-connected mode or islanded mode.Depending on the type of fault in a given mode,separate protection schemes are generally employed.With the change in microgrid operating mode,the protection scheme needs to be modified which is uneconomical and time inefficient.In this paper,a novel optimal protection coordination scheme is proposed,one which enables a common optimal relay setting which is valid in both operating modes of the microgrid.In this con-text,a common optimal protection scheme is introduced for dual setting directional overcurrent relays(DOCRs)using a combination of various standard relay characteristics.Along with the two variables,i.e.,time multiplier setting(TMS)and plug setting(PS)for conventional directional overcurrent relay,dual setting DOCRs are augmented with a third variable of relay characteristics identifier(RCI),which is responsible for selecting optimal relay characteristics from the standard relay characteristics according to the IEC-60255 standard.The relay coordination problem is formulated as a mixed-integer nonlinear programming(MINLP)problem,and the settings of relays are optimally determined using the genetic algorithm(GA)and the grey wolf optimization(GWO)algorithm.To validate the superiority of the pro-posed protection scheme,the distribution parts of the IEEE-14 and IEEE-30 bus benchmark systems are considered.
文摘Heavy fault currents flow in the event of fault at the loads connected in distribution system. To protect these loads, circuit breakers and relays are required at appropriate places with proper coordination between them. This research paper focuses on finding optimum relay setting required for minimum time to interrupt power supply to avoid miscoordination in operation of relays and also investigates effect on time multiplier settings (TMS) of directional overcurrent relays in a system with combined overhead lines-underground cables. Linear programming problem (LPP) approach is used for optimization. It is interesting to know the quantitative variations in TMS as the underground cables have different characteristics than overhead lines.
文摘The optimal setting of directional overcurrent relays(DOCRs)ensures the fault detection and clearing in the minimum possible operation time.Directional protective relaying is carried out to coordinate relay settings in a meshed network in the presence of distributed generation.The main goal of DOCR coordination is to find the optimal time dial setting(TDS)and pickup multiplier setting(PMS)to reach the minimum total operation time of all primary relays in the presence of coordination constraints.Due to the complexity of mixed integer non-linear programming(MINLP)problem,imperialistic competition algorithm(ICA)as a powerful evolutionary algorithm is used to solve the coordination problem of DOCRs.The proposed DOCR coordination formulation is implemented in three different test cases.The results are compared with the standard branch-and-bound algorithm and other meta-heuristic optimization algorithms,which demonstrates the effectiveness of the proposed algorithm.
文摘Distributed generators now is widely used in electrical power networks, in some cases it works seasonally, and some types works at special weather conditions like photo voltaic systems and wind energy, and due to this continuous changes in generation condition, the fault current level in network will be affected, this changes in fault current level will affect in the coordination between protection relays and to keep the coordination at right way, an adaptive protection system is required that can adaptive its setting according to generation changes, the fault current level in each case is evaluated using ETAP software, and the required relay setting in each case is also evaluated using Grey Wolf Optimizer (GWO) algorithm, and to select suitable setting which required in each condition, to select the active setting group of protection relay according to generation capacity, central protection unite can be used, and to improve protection stability and minimizing relays tripping time, a proposed method for selecting suitable backup relay is used, which leads to decrease relays tripping time and increase system stability, output settings for relays in all cases achieved our constrains.
文摘Due to the swift expansion and the deployment of distributed generation, protection systems of active distribution networks are more expected to be fast. In loop-based active distribution networks, directional overcurrent relays(DOCRs) are caught in different chains. These chains stand as the severe obstacle to follow fast-response protection, which remains a significant challenge. In this paper, to overcome this challenge, a fast protection scheme is proposed to break the chains in the corresponding loops by deploying auxiliary DOCRs. The most effective constraint associated with each chain is relaxed during the coordination process. Then, the auxiliary relays are employed to play the backup roles instead of conventional backup relays in the relaxed constraints. To avoid the misoperation of relays in the proposed scheme, low bandwidth communication links are suitably employed. Furthermore, the auxiliary relays are optimally placed and adjusted. The proposed approach demonstrates a mixed-integer nonlinear programming model which is tackled by particle swarm optimization(PSO) algorithm. Detailed simulation studies are carried out to verify the performance of the proposed approach.
文摘This paper summarizes some useful concepts about the coordination of directional overcurrent protections.The following key topics are described:the analysis of systems in a ring configuration and only one source of short-circuit currents;the impossibility of obtaining selectivity for all the possible system configurations with multiple sources;the need for inverse functions in order to obtain selectivity in systems with multiple sources;the coordination with protections for radial loads;the coordination between instantaneous and delayed functions;the considerations to select the pickup values;the influence of contributions from motors to short circuit currents;the transient configurations due to sequential trips at both line ends;the influence of dynamic behavior of overcurrent functions;the influence of stability constraints;other specific considerations for ground functions;some specific considerations for systems with distributed generation.A summary of these points and their effect on the coordination of directional overcurrent protections is not available in the current literature.This novel description should facilitate the inclusion of these key points in research and coordination studies related to these protective functions.
文摘The advancement accomplished in power systems over the last decade has enabled the extensive integration of renewable energy sources.It has resulted in enhanced efficiency and reliability of the system by meeting the load demand from small,local sources known as distributed generators(DGs).Consequently,this has led to the concept of microgrids(MGs).Nevertheless,there are operational challenges such as bidirectional power flow,fluctuations in fault current level,and protection issues such as blinding,false tripping,and unintentional islanding.Synchronous generator-based distributed generators(SGDGs)may experience a loss of synchronism across the generators due to undesirable events,such as abrupt changes in demand or faults.Similarly,voltage instability concerns may arise with inverter-based distributed generators(IDGs).This paper provides a thorough review of the concepts of critical clearing time(CCT)and grid code compliance in relation to SGDGs and IDGs,respectively.It provides a comprehensive analysis of the existing literature on several protection strategies used for reducing the adverse effects of DG integration.It highlights the characteristics,benefits,and constraints of these schemes.Finally,this paper presents the conclusion and outlines the potential areas for future study in the field of protective relaying methods,specifically addressing the issues posed by current power systems.