Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary ...Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers. Key words Variational data assimilation - Adjoint model - Over-specified partial boundary condition This research work is sponsored by the National Key Programme for Developing Basic Sciences (G1998040907), the Project of Natural Science Foundation of Jiangsu Province (BK99020), the President Foundation of Nanjing University (985) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.展开更多
We obtain explicit expressions for one unknown thermal coefficient (among the conductivity, mass density, specific heat and latent heat of fusion) of a semi-infinite material through the one-phase fractional Lamé...We obtain explicit expressions for one unknown thermal coefficient (among the conductivity, mass density, specific heat and latent heat of fusion) of a semi-infinite material through the one-phase fractional Lamé-Clapeyron-Stefan problem with an over-specified boundary condition on the fixed face . The partial differential equation and one of the conditions on the free boundary include a time Caputo’s fractional derivative of order . Moreover, we obtain the necessary and sufficient conditions on data in order to have a unique solution by using recent results obtained for the fractional diffusion equation exploiting the properties of the Wright and Mainardi functions, given in: 1) Roscani-Santillan Marcus, Fract. Calc. Appl. Anal., 16 (2013), 802 - 815;2) Roscani-Tarzia, Adv. Math. Sci. Appl., 24 (2014), 237 - 249 and 3) Voller, Int. J. Heat Mass Transfer, 74 (2014), 269 - 277. This work generalizes the method developed for the determination of unknown thermal coefficients for the classical Lamé-Clapeyron-Stefan problem given in Tarzia, Adv. Appl. Math., 3 (1982), 74 - 82, which is recovered by taking the limit when the order .展开更多
基金the National Key Programme for Developing Basic Sciences(G1998040907)the Project of Natural Science Foundation of Jiangsu Pr
文摘Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers. Key words Variational data assimilation - Adjoint model - Over-specified partial boundary condition This research work is sponsored by the National Key Programme for Developing Basic Sciences (G1998040907), the Project of Natural Science Foundation of Jiangsu Province (BK99020), the President Foundation of Nanjing University (985) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
文摘We obtain explicit expressions for one unknown thermal coefficient (among the conductivity, mass density, specific heat and latent heat of fusion) of a semi-infinite material through the one-phase fractional Lamé-Clapeyron-Stefan problem with an over-specified boundary condition on the fixed face . The partial differential equation and one of the conditions on the free boundary include a time Caputo’s fractional derivative of order . Moreover, we obtain the necessary and sufficient conditions on data in order to have a unique solution by using recent results obtained for the fractional diffusion equation exploiting the properties of the Wright and Mainardi functions, given in: 1) Roscani-Santillan Marcus, Fract. Calc. Appl. Anal., 16 (2013), 802 - 815;2) Roscani-Tarzia, Adv. Math. Sci. Appl., 24 (2014), 237 - 249 and 3) Voller, Int. J. Heat Mass Transfer, 74 (2014), 269 - 277. This work generalizes the method developed for the determination of unknown thermal coefficients for the classical Lamé-Clapeyron-Stefan problem given in Tarzia, Adv. Appl. Math., 3 (1982), 74 - 82, which is recovered by taking the limit when the order .