This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization ...This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization protocols are presented based on continuous controller strategies which can efficaciously eliminate chattering phenomenon existing in some previous results. Several sufficient conditions ensuring fixed-time and finite-time synchronization are derived by employing Lyapunov stability theory, linear matrix inequality (LMI) and adaptive technique. Furthermore, aimed at the model of this article, we study the problem of adaptive coupling strength in fixed-time synchronization which is rarely involved in previous results. Finally, several numerical examples are given to illustrate the effectiveness of our results.展开更多
Accurately modeling real network dynamics is a grand challenge in network science.The network dynamics arise from node interactions,which are shaped by network topology.Real networks tend to exhibit compact or highly ...Accurately modeling real network dynamics is a grand challenge in network science.The network dynamics arise from node interactions,which are shaped by network topology.Real networks tend to exhibit compact or highly optimized topologies.But the key problems arise:how to compress a network to best enhance its compactness,and what the compression limit of the network reflects?We abstract the topological compression of complex networks as a dynamic process of making them more compact and propose the local compression modulus that plays a key role in effective compression evolution of networks.Subsequently,we identify topological compressibility-a general property of complex networks that characterizes the extent to which a network can be compressed-and provide its approximate quantification.We anticipate that our findings and established theory will provide valuable insights into both dynamics and various applications of complex networks.展开更多
Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability ...Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods.展开更多
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s...This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.展开更多
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ...Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.展开更多
This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d...This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.展开更多
To resolve the ontology understanding problem, the structural features and the potential important terms of a large-scale ontology are investigated from the perspective of complex networks analysis. Through the empiri...To resolve the ontology understanding problem, the structural features and the potential important terms of a large-scale ontology are investigated from the perspective of complex networks analysis. Through the empirical studies of the gene ontology with various perspectives, this paper shows that the whole gene ontology displays the same topological features as complex networks including "small world" and "scale-free",while some sub-ontologies have the "scale-free" property but no "small world" effect.The potential important terms in an ontology are discovered by some famous complex network centralization methods.An evaluation method based on information retrieval in MEDLINE is designed to measure the effectiveness of the discovered important terms.According to the relevant literature of the gene ontology terms,the suitability of these centralization methods for ontology important concepts discovering is quantitatively evaluated.The experimental results indicate that the betweenness centrality is the most appropriate method among all the evaluated centralization measures.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Air transport systems are highly dynamic at temporal scales from minutes to years.This dynamic behavior not only characterizes the evolution of the system but also affect the system's functioning.Understanding the ev...Air transport systems are highly dynamic at temporal scales from minutes to years.This dynamic behavior not only characterizes the evolution of the system but also affect the system's functioning.Understanding the evolutionary mechanisms is thus fundamental in order to better design optimal air transport networks that benefits companies,passengers and the environment.In this review,we briefly present and discuss the state-of-the-art on time-evolving air transport networks.We distinguish the structural analysis of sequences of network snapshots,ideal for long-term network evolution(e.g.annual evolution),and temporal paths,preferred for short-term dynamics(e.g.hourly evolution).We emphasize that most previous research focused on the first modeling approach(i.e.long-term) whereas only a few studies look at high-resolution temporal paths.We conclude the review highlighting that much research remains to be done,both to apply already available methods and to develop new measures for temporal paths on air transport networks.In particular,we identify that the study of delays,network resilience and optimization of resources(aircraft and crew) are critical topics.展开更多
This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the contro...This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.展开更多
We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the...We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.展开更多
An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenan...An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the research on software refactoring at the package level is very little. This paper presents a novel approach to refactor the package structures of object oriented software. It uses software networks to represent classes and their dependencies. It proposes a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. And it finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures. The empirical evaluation of the proposed approach has been performed in two open source Java projects, and the benefits of our approach are illustrated in comparison with the other three approaches.展开更多
The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the...The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.展开更多
In complex networks,identifying influential spreader is of great significance for improving the reliability of networks and ensuring the safe and effective operation of networks.Nowadays,it is widely used in power net...In complex networks,identifying influential spreader is of great significance for improving the reliability of networks and ensuring the safe and effective operation of networks.Nowadays,it is widely used in power networks,aviation networks,computer networks,and social networks,and so on.Traditional centrality methods mainly include degree centrality,closeness centrality,betweenness centrality,eigenvector centrality,k-shell,etc.However,single centrality method is onesided and inaccurate,and sometimes many nodes have the same centrality value,namely the same ranking result,which makes it difficult to distinguish between nodes.According to several classical methods of identifying influential nodes,in this paper we propose a novel method that is more full-scaled and universally applicable.Taken into account in this method are several aspects of node’s properties,including local topological characteristics,central location of nodes,propagation characteristics,and properties of neighbor nodes.In view of the idea of the multi-attribute decision-making,we regard the basic centrality method as node’s attribute and use the entropy weight method to weigh different attributes,and obtain node’s combined centrality.Then,the combined centrality is applied to the gravity law to comprehensively identify influential nodes in networks.Finally,the classical susceptible-infected-recovered(SIR)model is used to simulate the epidemic spreading in six real-society networks.Our proposed method not only considers the four topological properties of nodes,but also emphasizes the influence of neighbor nodes from the aspect of gravity.It is proved that the new method can effectively overcome the disadvantages of single centrality method and increase the accuracy of identifying influential nodes,which is of great significance for monitoring and controlling the complex networks.展开更多
In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitative...In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitatively described. Results of node degrees for the Northern Hemisphere (NH) mid-high latitude (30° N-90°N) circulation system (NHS) networks with and without the Arctic Oscillations (AO), the North Atlantic Oscillations (NAO) and the Pacific-North American pattern (PNA) demonstrate that the teleconnections greatly shorten the mean shortest path length of the networks, thus being advantageous to the rapid transfer of local fluctuation information over the network and to the stability of the NHS. The impact of the AO on the NHS connection structure is most important and the impact of the NAO is the next important. The PNA is a relatively independent teleconnection, and its role in the NHS is mainly manifested in the connection between the NHS and the tropical circulation system (TRS). As to the Southern Hemisphere mid-high latitude (30°S-90°S) circulation system (SHS), the impact of the Antarctic Arctic Oscillations (AAO) on the structural stability of the system is most important. In addition, there might be a stable correlation dipole (AACD) in the SHS, which also has important influence on the structure of the SHS networks.展开更多
In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi...In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.展开更多
Many unique properties of complex networks result from heterogeneity. The measure and analysis of heterogeneity are important and desirable to the research of the properties and functions of complex networks. In this ...Many unique properties of complex networks result from heterogeneity. The measure and analysis of heterogeneity are important and desirable to the research of the properties and functions of complex networks. In this paper, the rank distribution is proposed as a new statistic feature of complex networks. Based on the rank distribution, a novel measure of the heterogeneity called a normalized entropy of rank distribution (NERD) is proposed. The NERD accords with the normal meaning of heterogeneity within the context of complex networks compared with conventional measures. The heterogeneity of scale-free networks is studied using the NERD. It is shown that scale-free networks become more heterogeneous as the scaling exponent decreases and the NERD of scale-free networks is independent of the number of vertices, which indicates that the NERD is a suitable and effective measure of heterogeneity for networks with different sizes.展开更多
Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degr...Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.展开更多
文摘This paper mainly investigates the finite-time and fixed-time synchronization problem for a class of general output-coupling complex networks with output feedback nodes. The fixed-time and finite-time synchronization protocols are presented based on continuous controller strategies which can efficaciously eliminate chattering phenomenon existing in some previous results. Several sufficient conditions ensuring fixed-time and finite-time synchronization are derived by employing Lyapunov stability theory, linear matrix inequality (LMI) and adaptive technique. Furthermore, aimed at the model of this article, we study the problem of adaptive coupling strength in fixed-time synchronization which is rarely involved in previous results. Finally, several numerical examples are given to illustrate the effectiveness of our results.
基金supported inpart by the National Natural Science Foundation of China(Grant No. 12371088)the Innovative Research Group Project of Natural Science Foundation of Hunan Provinceof China (Grant No. 2024JJ1008)in part by the Australian Research Council (ARC) through the Discovery Projects scheme (Grant No. DP220100580)。
文摘Accurately modeling real network dynamics is a grand challenge in network science.The network dynamics arise from node interactions,which are shaped by network topology.Real networks tend to exhibit compact or highly optimized topologies.But the key problems arise:how to compress a network to best enhance its compactness,and what the compression limit of the network reflects?We abstract the topological compression of complex networks as a dynamic process of making them more compact and propose the local compression modulus that plays a key role in effective compression evolution of networks.Subsequently,we identify topological compressibility-a general property of complex networks that characterizes the extent to which a network can be compressed-and provide its approximate quantification.We anticipate that our findings and established theory will provide valuable insights into both dynamics and various applications of complex networks.
基金Supported by the National Natural Science Foundation of China(Grant No.12031002)。
文摘Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods.
基金Project supported by Jilin Provincial Science and Technology Development Plan(Grant No.20220101137JC).
文摘This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
基金support from the National Natural Science Foundation of China(Grant No.T2293771)the STI 2030-Major Projects(Grant No.2022ZD0211400)the Sichuan Province Outstanding Young Scientists Foundation(Grant No.2023NSFSC1919)。
文摘Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金Project supported the Natural Science Foundation of Zhejiang Province, China (Grant No. LQN25F030011)the Fundamental Research Project of Hangzhou Dianzi University (Grant No. KYS065624391)+1 种基金the National Natural Science Foundation of China (Grant No. 61573148)the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2019A050520001)。
文摘This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.
基金The National Basic Research Program of China (973Program) (No.2005CB321802)Program for New Century Excellent Talents in University (No.NCET-06-0926)the National Natural Science Foundation of China (No.60873097,90612009)
文摘To resolve the ontology understanding problem, the structural features and the potential important terms of a large-scale ontology are investigated from the perspective of complex networks analysis. Through the empirical studies of the gene ontology with various perspectives, this paper shows that the whole gene ontology displays the same topological features as complex networks including "small world" and "scale-free",while some sub-ontologies have the "scale-free" property but no "small world" effect.The potential important terms in an ontology are discovered by some famous complex network centralization methods.An evaluation method based on information retrieval in MEDLINE is designed to measure the effectiveness of the discovered important terms.According to the relevant literature of the gene ontology terms,the suitability of these centralization methods for ontology important concepts discovering is quantitatively evaluated.The experimental results indicate that the betweenness centrality is the most appropriate method among all the evaluated centralization measures.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by the Fonds De La Recherche Scientifique-FNRS
文摘Air transport systems are highly dynamic at temporal scales from minutes to years.This dynamic behavior not only characterizes the evolution of the system but also affect the system's functioning.Understanding the evolutionary mechanisms is thus fundamental in order to better design optimal air transport networks that benefits companies,passengers and the environment.In this review,we briefly present and discuss the state-of-the-art on time-evolving air transport networks.We distinguish the structural analysis of sequences of network snapshots,ideal for long-term network evolution(e.g.annual evolution),and temporal paths,preferred for short-term dynamics(e.g.hourly evolution).We emphasize that most previous research focused on the first modeling approach(i.e.long-term) whereas only a few studies look at high-resolution temporal paths.We conclude the review highlighting that much research remains to be done,both to apply already available methods and to develop new measures for temporal paths on air transport networks.In particular,we identify that the study of delays,network resilience and optimization of resources(aircraft and crew) are critical topics.
基金supported by the National Natural Science Foundation of China (Grant No 10647001)the Guangxi Natural Science Foundation (Grant No 0728042)+1 种基金the Program for Excellent Talents in Guangxi Higher Education Institutions (Grant No RC2007006)the NSFC-HK Joint Research Scheme (Grant No N-CityU107/07)
文摘This paper studies pinning-controlled synchronization of complex networks with bounded or unbounded synchronized regions. To study a state-feedback pinning-controlled network with N nodes, it first converts the controlled network to an extended network of N+1 nodes without controls. It is shown that the controlled synchronizability of the given network is determined by the real part of the smallest nonzero eigenvalue of the coupling matrix of its extended network when the synchronized region is unbounded; but it is determined by the ratio of the real parts of the largest and the smallest nonzero eigenvalues of the coupling matrix when the synchronized region is bounded. Both theoretical analysis and numerical simulation show that the portion of controlled nodes has no critical values when the synchronized region is unbounded, but it has a critical value when the synchronized region is bounded. In the former case, therefore, it is possible to control the network to achieve synchronization by pinning only one node. In the latter case, the network can achieve controlled synchronization only when the portion of controlled nodes is larger than the critical value.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50937001)the National Natural Science Foundation of China (Grant Nos. 10862001 and 10947011)the Construction of Key Laboratories in Universities of Guangxi,China (Grant No. 200912)
文摘We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.
基金supported by National Natural Science Foundation of China(No. 61202048)Zhejiang Provincial Nature Science Foundation of China(No. LQ12F02011)Open Foundation of State Key Laboratory of Software Engineering of Wuhan University of China(No. SKLSE-2012-09-21)
文摘An intrinsic property of software in a real-world environment is its need to evolve, which is usually accompanied by the increase of software complexity and deterioration of software quality, making software maintenance a tough problem. Refactoring is regarded as an effective way to address this problem. Many refactoring approaches at the method and class level have been proposed. But the research on software refactoring at the package level is very little. This paper presents a novel approach to refactor the package structures of object oriented software. It uses software networks to represent classes and their dependencies. It proposes a constrained community detection algorithm to obtain the optimized community structures in software networks, which also correspond to the optimized package structures. And it finally provides a list of classes as refactoring candidates by comparing the optimized package structures with the real package structures. The empirical evaluation of the proposed approach has been performed in two open source Java projects, and the benefits of our approach are illustrated in comparison with the other three approaches.
基金supported by National Natural Science Foundation of China(No.61273008)Science Research Project of Liaoning Provicial Education Department(No.L2012208)Science Foundation of Ministry of Housing and Urban-Rural Development(No.2013-K5-2)
文摘The problem of exponential synchronization for a class of general complex dynamical networks with nonlinear coupling delays by adaptive pinning periodically intermittent control is considered in this paper. We use the methods of the adaptive control, pinning control and periodically intermittent control. Based on the piecewise Lyapunov stability theory, some less conservative criteria are derived for the global exponential synchronization of the complex dynamical networks with coupling delays. And several corresponding adaptive pinning feedback synchronization controllers are designed. These controllers have strong robustness against the coupling strength and topological structure of the network. Using the delayed nonlinear system as the nodes of the networks, a numerical example of the complex dynamical networks with nonlinear coupling delays is given to demonstrate the effectiveness of the control strategy.
基金Project support by the National Key Research and Development Program of China(Grant No.2018YFF0301000)the National Natural Science Foundation of China(Grant Nos.71673161 and 71790613)。
文摘In complex networks,identifying influential spreader is of great significance for improving the reliability of networks and ensuring the safe and effective operation of networks.Nowadays,it is widely used in power networks,aviation networks,computer networks,and social networks,and so on.Traditional centrality methods mainly include degree centrality,closeness centrality,betweenness centrality,eigenvector centrality,k-shell,etc.However,single centrality method is onesided and inaccurate,and sometimes many nodes have the same centrality value,namely the same ranking result,which makes it difficult to distinguish between nodes.According to several classical methods of identifying influential nodes,in this paper we propose a novel method that is more full-scaled and universally applicable.Taken into account in this method are several aspects of node’s properties,including local topological characteristics,central location of nodes,propagation characteristics,and properties of neighbor nodes.In view of the idea of the multi-attribute decision-making,we regard the basic centrality method as node’s attribute and use the entropy weight method to weigh different attributes,and obtain node’s combined centrality.Then,the combined centrality is applied to the gravity law to comprehensively identify influential nodes in networks.Finally,the classical susceptible-infected-recovered(SIR)model is used to simulate the epidemic spreading in six real-society networks.Our proposed method not only considers the four topological properties of nodes,but also emphasizes the influence of neighbor nodes from the aspect of gravity.It is proved that the new method can effectively overcome the disadvantages of single centrality method and increase the accuracy of identifying influential nodes,which is of great significance for monitoring and controlling the complex networks.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.40930952 and 40705031)the Special Scientific Research Project for Public Interest,China (Grant Nos.GYHY201006021 and GYHY201106016)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No.2007BAC29B01)
文摘In terms of the characteristic topology parameters of climate complex networks, the spatial connection structural complexity of the circulation system and the influence of four teleconnection patterns are quantitatively described. Results of node degrees for the Northern Hemisphere (NH) mid-high latitude (30° N-90°N) circulation system (NHS) networks with and without the Arctic Oscillations (AO), the North Atlantic Oscillations (NAO) and the Pacific-North American pattern (PNA) demonstrate that the teleconnections greatly shorten the mean shortest path length of the networks, thus being advantageous to the rapid transfer of local fluctuation information over the network and to the stability of the NHS. The impact of the AO on the NHS connection structure is most important and the impact of the NAO is the next important. The PNA is a relatively independent teleconnection, and its role in the NHS is mainly manifested in the connection between the NHS and the tropical circulation system (TRS). As to the Southern Hemisphere mid-high latitude (30°S-90°S) circulation system (SHS), the impact of the Antarctic Arctic Oscillations (AAO) on the structural stability of the system is most important. In addition, there might be a stable correlation dipole (AACD) in the SHS, which also has important influence on the structure of the SHS networks.
基金supported by the Water Conservancy Science and Technology Project of Jiangsu Province(Grant No.2012041)the Jiangsu Province Ordinary University Graduate Student Research Innovation Project(Grant No.CXZZ13_0256)
文摘In this study, we simulated water flow in a water conservancy project consisting of various hydraulic structures, such as sluices, pumping stations, hydropower stations, ship locks, and culverts, and developed a multi-period and multi-variable joint optimization scheduling model for flood control, drainage, and irrigation. In this model, the number of sluice holes, pump units, and hydropower station units to be opened were used as decision variables, and different optimization objectives and constraints were considered. This model was solved with improved genetic algorithms and verified using the Huaian Water Conservancy Project as an example. The results show that the use of the joint optimization scheduling led to a 10% increase in the power generation capacity and a 15% reduction in the total energy consumption. The change in the water level was reduced by 0.25 m upstream of the Yundong Sluice, and by 50% downstream of pumping stations No. 1, No. 2, and No. 4. It is clear that the joint optimization scheduling proposed in this study can effectively improve power generation capacity of the project, minimize operating costs and energy consumption, and enable more stable operation of various hydraulic structures. The results may provide references for the management of water conservancy projects in complex river networks.
基金Project supported by the National Natural Science Foundation of China (Grant No 70501032).
文摘Many unique properties of complex networks result from heterogeneity. The measure and analysis of heterogeneity are important and desirable to the research of the properties and functions of complex networks. In this paper, the rank distribution is proposed as a new statistic feature of complex networks. Based on the rank distribution, a novel measure of the heterogeneity called a normalized entropy of rank distribution (NERD) is proposed. The NERD accords with the normal meaning of heterogeneity within the context of complex networks compared with conventional measures. The heterogeneity of scale-free networks is studied using the NERD. It is shown that scale-free networks become more heterogeneous as the scaling exponent decreases and the NERD of scale-free networks is independent of the number of vertices, which indicates that the NERD is a suitable and effective measure of heterogeneity for networks with different sizes.
基金supported by the National Natural Science Foundation of China(61174022)the National High Technology Research and Development Program of China(863 Program)(2013AA013801)+2 种基金the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University(BUAA-VR-14KF-02)the General Research Program of the Science Supported by Sichuan Provincial Department of Education(14ZB0322)the Fundamental Research Funds for the Central Universities(XDJK2014D008)
文摘Identifying influential nodes in complex networks is still an open issue. In this paper, a new comprehensive centrality mea- sure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality, betweenness centra- lity and closeness centrality are taken into consideration in the proposed method. Numerical examples are used to illustrate the effectiveness of the proposed method.