In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t...In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.展开更多
In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot ...In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot swap function supply users to remove and insert LED module. The smart output voltage can regulate quickly and rightly output voltage in different number of LED series connection. The system consists two stages, one is 50 W flyback converter which is used as power factor corrector, it is input source is 110-220 V, PF (power factor) is about 0,994. The other is Boost DC/DC converter, it can offer 35-60 V of output voltage. Finally, a prototype has been built and tested. The simulation and experimental results are shown to verify the feasibility of the proposed method.展开更多
Converters with pulse width modulation are used for connections between the direct current (DC) and alternating current (AC) networks, e.g., in uninterrupted power supply systems, AC electromotor drives, for power...Converters with pulse width modulation are used for connections between the direct current (DC) and alternating current (AC) networks, e.g., in uninterrupted power supply systems, AC electromotor drives, for powering induction furnaces, in audio technique. Spectrum of signals sampled by pulse amplitude modulation and output voltage spectrum of the converter with pulse width modulation have similar properties. Spectrum of signals sampled by pulse amplitude modulation contains a harmonic of frequency equal to the frequency of the modulating signal and the harmonics of frequencies equal to the sum of frequency of the modulating signal and multiples of the sampling frequency. The output voltage spectrum of the converter with bipolar pulse width modulation contains harmonic of frequency equal to the frequency of the modulating signal and harmonics of frequencies equal to sum of the frequency of the modulating signal and multiples of the frequency of the carrier signal. It also contains harmonics of frequencies equal to the sum of the multiples of the frequency of the modulating signal and the multiples of the carrier signal. The comparison analysis was carried out for the harmonics of the output voltage of the converter with bipolar pulse width modulation in time domain. The dependency of the amplitudes and frequency spectrum on the wave forms of the carrier signal and modulating signal was shown. Similarity of the output voltage spectrum of the converter and signal spectrum sampled by the pulse width modulation was also shown. Key words: Output voltage converter with bipolar pulse width modulation, spectral analysis, Fourier series, carrier signal, reference signal.展开更多
KY Boost Converter, a modern invention in the field of non-isolated DC-DC boost converter is identified for minimum voltage ripple. KY boost converter is the com- bination of KY converter and traditional boost convert...KY Boost Converter, a modern invention in the field of non-isolated DC-DC boost converter is identified for minimum voltage ripple. KY boost converter is the com- bination of KY converter and traditional boost converter. Such a converter has con- tinuous input and output inductor current, different from the traditional boost con- verter. And hence this converter is very suitable for very low-ripple applications. The Particle Swarm Optimization (PSO) based controller, FUZZY based controller and open loop KY boost converter are designed in MATLAB/Simulink model. The simu- lated results show a reduction in output ripple from 1.18 V of the existing open loop KY boost converter output to 0.54 V in the FUZZY logic controlled converter out- put. Further reduction in output ripple to 0.29 V is achieved in the proposed PSO based converter. The simulated results also show the variation of switching pulses based on the different existing and proposed method.展开更多
Piezoelectric nanogenerators(NGs)have been developed for converting mechanical energy into electric energy using ZnO,GaN,ZnSnO3,and PZT nanowires.Due to the unique polarity and non-central symmetry of the wurtzite str...Piezoelectric nanogenerators(NGs)have been developed for converting mechanical energy into electric energy using ZnO,GaN,ZnSnO3,and PZT nanowires.Due to the unique polarity and non-central symmetry of the wurtzite structure,a composite made of using the conical shaped nanowires are used as a simple,cost-effective,and scalable nanogenerator.Based on the finite element methods,the output voltage of the nanogenerator is modeled numerically.The key factors:the spatial location of nanowires,length and dip angle of nanowires,thickness of NG devices,and the physical properties of the polymer inside NGs,which affect the output voltage are studied.The results provide guidance for optimization the output of piezoelectric nanogenerators.展开更多
Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage ...Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly.Regulating the feeding flow is an effective way to achieve this goal,and especially,the satisfactory results can be achieved by regulating anode feeding flow.In this work,a feedforward fuzzy logic PID algorithm is proposed.The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC,and corresponding PID parameters are calculated according to defuzzification.The magnitude value of the current density is used to simulate the value of the external load.The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm.The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.展开更多
To reduce output voltage noise and improve dynamic response performance,this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP).A hybrid control method was proposed...To reduce output voltage noise and improve dynamic response performance,this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP).A hybrid control method was proposed for the compensation of the secondary filter.The introduction of a high-frequency feedback path,in addition to the traditional feedback path,effectively improved the influence of the secondary filter on the loop stability and direct current regulation performance.A small-signal model of the buck converter based on the proposed control method was derived,and the stability and selection of control parameters were analyzed.AVP is realized using an easy-to-implement and low-cost control method that was proposed to improve dynamic response performance by changing the low-frequency gain of the control loop and load regulation of the output voltage.The experimental results of the buck converter showed that the proposed method effectively reduced the output voltage noise by 50%and improved the dynamic response capability to meet the target requirements of mainstream electronic systems.展开更多
Silicon-air batteries(SABs)hold significant potential as efficient energy conversion devices due to their high theoretical energy density,theoretical discharge voltage,and favorable energy-to-cost ratios.However,their...Silicon-air batteries(SABs)hold significant potential as efficient energy conversion devices due to their high theoretical energy density,theoretical discharge voltage,and favorable energy-to-cost ratios.However,their applicability has been hindered by low output discharge potential,high discharge polarizations,and singular aqueous configuration.To address these,the catalyst with faster oxygen reduction reaction(ORR)kinetic rate,nitrogen-doped carbon materials functionalized with FeMo metal clusters(FeMo-NC),was designed in acid electrolyte and thus high output voltage and energy density SABs with asymmetric-electrolytes have been developed.This innovative design aligns the reaction rates of the cathode and anode in SABs,achieving stable discharge around 1.7 V for 188 h.Furthermore,an all-in-one quasisolid-state SAB(QSSSAB)was first developed using a suitable acid-base gel electrolyte.This all-in-one QSSSAB showcases good safety,low cost,and portability,with open-circuit voltage of 1.6 V and energy density of 300.2 Wh kg^(-1),surpassing the energy density of most previously reported aqueous SABs.In terms of application,these compact all-in-one QSSSABs can provide stable and reliable power support for portable small electronic devices(such as electronic players,diodes,and electronic watches).展开更多
Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel ce...Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell(BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam(PC) and urea-modified carbon foam(UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 m V lower than that of the PC, reaching-570 ±10 m V(vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 m W m-2, which is 566.2-fold higher than that from plain graphite anode(PG). The fuel cell containing the UC anode has the maximum power density(256.0 m W m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.展开更多
The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of t...The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of the characteristics of PSM converter is described in this paper, of which include efficiency, frequency spectrum analysis, output voltage ripple, response speed and interference rejection capability. Compared with PWM control mode, PSM converter has high efficiency, especially with fight loads, quick response, good interference rejection and good EMC characteristic. Improved PSM slightly, it could be a kind of good independent regulating mode during the whole operating process for a DC-DC converter. Finally, some experimental results are also presented in this paper.展开更多
We study the dynamics of two electron spins in coupled quantum dots (CQDs) monitored by a quantum point contact (QPC) detector. Their quantum state can be measured by embedding the QPC in an LC circuit. We derive ...We study the dynamics of two electron spins in coupled quantum dots (CQDs) monitored by a quantum point contact (QPC) detector. Their quantum state can be measured by embedding the QPC in an LC circuit. We derive the Bloch-type rate equations of the reduced density matrix for CQDs. Special attention is paid to the numerical results for the weak measurement condintion under a strong Coulomb interaction. It is shown that the evolution of QPC current always follows that of electron occupation in the right dot. In addition, we find that the output voltage of the circuit can reflect the evolution of QPC current when the circuit and QPC are approximately equal in frequency. In particular, the wave shape of the output voltage can be improved by adjusting the circuit resonance frequency and bandwidth.展开更多
A dual mode charge pump to produce an adaptive power supply for a class G audio power amplifier is presented.According to the amplitude of the input signals,the charge pump has two level output voltage rails available...A dual mode charge pump to produce an adaptive power supply for a class G audio power amplifier is presented.According to the amplitude of the input signals,the charge pump has two level output voltage rails available to save power.It operates both in current mode at high output load and in pulse frequency modulation (PFM) at light load to reduce the power dissipation.Also,dynamic adjustment of the power stage transistor size based on load current at the PFM mode is introduced to reduce the output voltage ripple and prevent the switching frequency from audio range.The prototype is implemented in 0.18μm 3.3 V CMOS technology.Experimental results show that the maximum power efficiency of the charge pump is 79.5%@ 0.5x mode and 83.6%@ lx mode.The output voltage ripple is less than 15 mV while providing 120 mA of the load current at PFM control and less than 18 mV while providing 300 mA of the load current at current mode control.An analytical model for ripple voltage and efficiency calculation of the proposed PFM control demonstrates reasonable agreement with measured results.展开更多
To meet the demands for a number of LEDs,a novel charge pump circuit with current mode control is proposed.Regulation is achieved by operating the current mirrors and the output current of the operational transconduct...To meet the demands for a number of LEDs,a novel charge pump circuit with current mode control is proposed.Regulation is achieved by operating the current mirrors and the output current of the operational transconductance amplifier.In the steady state,the input current from power voltage retains constant,so reducing the noise induced on the input voltage source and improving the output voltage ripple.The charge pump small-signal model is used to describe the device’s dynamic behavior and stability.Analytical predictions were verified by Hspice simulation and testing.Load driving is up to 800 mA with a power voltage of 3.6 V,and the output voltage ripple is less than 45 mV.The output response time is less than 8μs,and the load current jumps from 400 to 800 mA.展开更多
Resonant converter(RC)was brought under research in the 80’s widely,which can attain very small switching loss,therefore,facilitating resonant topologies to function at the high switching frequency.It is well address...Resonant converter(RC)was brought under research in the 80’s widely,which can attain very small switching loss,therefore,facilitating resonant topologies to function at the high switching frequency.It is well addressed in the review that the optimal parameterization of the resonant converter is a crucial task.While the literature has come out with different methodologies,they are highly conceptual and so the uncertainty due to high theoretical impact persists.This paper intends to develop a Parameter Optimization(PO)algorithm for designing and developing of LLC-RC.The proposed algorithm overwhelms the limitation by introducing a nonconceptual model based on the simulated outcome.Specifically,the resonant current under start-up conditions is acquired from the literary outcome,and the intelligent model is constructed.Based on the proposed model,a renowned search algorithm called as Whale Optimization Algorithm(WOA)is exploited to optimize the time constant of the resonant converter,which is a critical design parameter.The objective model is derived as a function of start-up time and so the start-up time can be minimized.Moreover,the response speed of the output voltage is also increased.The proposed Whale Optimization Algorithm based Parameter Optimization(WOAPO)is compared with the conventional techniques such as IAPO,Ant Bee Colony-PO(ABC-PO),Particle Swarm Optimization-PO(PSOPO),FireFly PO(FFPO)and Grey Wolf Optimization(GWOPO).The obtained result verifies the performance of the proposed method in modeling LLC-RC system.展开更多
As a high efficiency hydrogen-to-power device,proton exchange membrane fuel cell(PEMFC)attracts much attention,especially for the automotive applications.Real-time prediction of output voltage and area specific resist...As a high efficiency hydrogen-to-power device,proton exchange membrane fuel cell(PEMFC)attracts much attention,especially for the automotive applications.Real-time prediction of output voltage and area specific resistance(ASR)via the on-board model is critical to monitor the health state of the automotive PEMFC stack.In this study,we use a transient PEMFC system model for dynamic process simulation of PEMFC to generate the dataset,and a long short-term memory(LSTM)deep learning model is developed to predict the dynamic per-formance of PEMFC.The results show that the developed LSTM deep learning model has much better perfor-mance than other models.A sensitivity analysis on the input features is performed,and three insensitive features are removed,that could slightly improve the prediction accuracy and significantly reduce the data volume.The neural structure,sequence duration,and sampling frequency are optimized.We find that the optimal sequence data duration for predicting ASR is 5 s or 20 s,and that for predicting output voltage is 40 s.The sampling frequency can be reduced from 10 Hz to 0.5 Hz and 0.25 Hz,which slightly affects the prediction accuracy,but obviously reduces the data volume and computation amount.展开更多
This paper presents a low power 8-bit 1 MS/s SAR ADC with 7.72-bit ENOB. Without an op-amp, an improved segmented capacitor DAC is proposed to reduce the capacitance and the chip area. A dynamic latch comparator with ...This paper presents a low power 8-bit 1 MS/s SAR ADC with 7.72-bit ENOB. Without an op-amp, an improved segmented capacitor DAC is proposed to reduce the capacitance and the chip area. A dynamic latch comparator with output offset voltage storage technology is used to improve the precision. Adding an extra positive feedback in the latch is to increase the speed. What is more, two pairs of CMOS switches are utilized to eliminate the kickback noise introduced by the latch. The proposed SAR ADC was fabricated in SMIC 0.18μm CMOS technology. The measured results show that this design achieves an SFDR of 61.8 dB and an ENOB of 7.72 bits, and it consumes 67.5μW with the FOM of 312 fJ/conversion-step at 1 MS/s sample under 1.8 V power supply.展开更多
文摘In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.
文摘In this paper, a high power factor LED driver with hot swap, smart output voltage regulation and dimming control is proposed. The dimming control is used to change LED brightness. During converter is working, the hot swap function supply users to remove and insert LED module. The smart output voltage can regulate quickly and rightly output voltage in different number of LED series connection. The system consists two stages, one is 50 W flyback converter which is used as power factor corrector, it is input source is 110-220 V, PF (power factor) is about 0,994. The other is Boost DC/DC converter, it can offer 35-60 V of output voltage. Finally, a prototype has been built and tested. The simulation and experimental results are shown to verify the feasibility of the proposed method.
文摘Converters with pulse width modulation are used for connections between the direct current (DC) and alternating current (AC) networks, e.g., in uninterrupted power supply systems, AC electromotor drives, for powering induction furnaces, in audio technique. Spectrum of signals sampled by pulse amplitude modulation and output voltage spectrum of the converter with pulse width modulation have similar properties. Spectrum of signals sampled by pulse amplitude modulation contains a harmonic of frequency equal to the frequency of the modulating signal and the harmonics of frequencies equal to the sum of frequency of the modulating signal and multiples of the sampling frequency. The output voltage spectrum of the converter with bipolar pulse width modulation contains harmonic of frequency equal to the frequency of the modulating signal and harmonics of frequencies equal to sum of the frequency of the modulating signal and multiples of the frequency of the carrier signal. It also contains harmonics of frequencies equal to the sum of the multiples of the frequency of the modulating signal and the multiples of the carrier signal. The comparison analysis was carried out for the harmonics of the output voltage of the converter with bipolar pulse width modulation in time domain. The dependency of the amplitudes and frequency spectrum on the wave forms of the carrier signal and modulating signal was shown. Similarity of the output voltage spectrum of the converter and signal spectrum sampled by the pulse width modulation was also shown. Key words: Output voltage converter with bipolar pulse width modulation, spectral analysis, Fourier series, carrier signal, reference signal.
文摘KY Boost Converter, a modern invention in the field of non-isolated DC-DC boost converter is identified for minimum voltage ripple. KY boost converter is the com- bination of KY converter and traditional boost converter. Such a converter has con- tinuous input and output inductor current, different from the traditional boost con- verter. And hence this converter is very suitable for very low-ripple applications. The Particle Swarm Optimization (PSO) based controller, FUZZY based controller and open loop KY boost converter are designed in MATLAB/Simulink model. The simu- lated results show a reduction in output ripple from 1.18 V of the existing open loop KY boost converter output to 0.54 V in the FUZZY logic controlled converter out- put. Further reduction in output ripple to 0.29 V is achieved in the proposed PSO based converter. The simulated results also show the variation of switching pulses based on the different existing and proposed method.
文摘Piezoelectric nanogenerators(NGs)have been developed for converting mechanical energy into electric energy using ZnO,GaN,ZnSnO3,and PZT nanowires.Due to the unique polarity and non-central symmetry of the wurtzite structure,a composite made of using the conical shaped nanowires are used as a simple,cost-effective,and scalable nanogenerator.Based on the finite element methods,the output voltage of the nanogenerator is modeled numerically.The key factors:the spatial location of nanowires,length and dip angle of nanowires,thickness of NG devices,and the physical properties of the polymer inside NGs,which affect the output voltage are studied.The results provide guidance for optimization the output of piezoelectric nanogenerators.
基金Project(61563032)supported by the National Natural Science Foundation of ChinaProject(18JR3RA133)supported by Gansu Basic Research Innovation Group,China
文摘Microbial fuel cell(MFC)is a kind of promising clean power supply energy equipment,but serious nonlinearities and disturbances exist when the MFC runs,and it is an important topic to guarantee that the output voltage reaches the setting value quickly and smoothly.Regulating the feeding flow is an effective way to achieve this goal,and especially,the satisfactory results can be achieved by regulating anode feeding flow.In this work,a feedforward fuzzy logic PID algorithm is proposed.The fuzzy logic system is introduced to deal with the non-linear dynamics of MFC,and corresponding PID parameters are calculated according to defuzzification.The magnitude value of the current density is used to simulate the value of the external load.The simulation results indicate that the MFC output voltage can track the setting value quickly and smoothly with the proposed feedforward fuzzy logic PID algorithm.The proposed algorithm is more efficient and robust with respect to anti-disturbance performance and tracking accuracy than other three control methods.
文摘To reduce output voltage noise and improve dynamic response performance,this study designed a buck converter on the basis of secondary filters and adaptive voltage positioning(AVP).A hybrid control method was proposed for the compensation of the secondary filter.The introduction of a high-frequency feedback path,in addition to the traditional feedback path,effectively improved the influence of the secondary filter on the loop stability and direct current regulation performance.A small-signal model of the buck converter based on the proposed control method was derived,and the stability and selection of control parameters were analyzed.AVP is realized using an easy-to-implement and low-cost control method that was proposed to improve dynamic response performance by changing the low-frequency gain of the control loop and load regulation of the output voltage.The experimental results of the buck converter showed that the proposed method effectively reduced the output voltage noise by 50%and improved the dynamic response capability to meet the target requirements of mainstream electronic systems.
基金National Natural Science Foundation of China,Grant/Award Number:62264006。
文摘Silicon-air batteries(SABs)hold significant potential as efficient energy conversion devices due to their high theoretical energy density,theoretical discharge voltage,and favorable energy-to-cost ratios.However,their applicability has been hindered by low output discharge potential,high discharge polarizations,and singular aqueous configuration.To address these,the catalyst with faster oxygen reduction reaction(ORR)kinetic rate,nitrogen-doped carbon materials functionalized with FeMo metal clusters(FeMo-NC),was designed in acid electrolyte and thus high output voltage and energy density SABs with asymmetric-electrolytes have been developed.This innovative design aligns the reaction rates of the cathode and anode in SABs,achieving stable discharge around 1.7 V for 188 h.Furthermore,an all-in-one quasisolid-state SAB(QSSSAB)was first developed using a suitable acid-base gel electrolyte.This all-in-one QSSSAB showcases good safety,low cost,and portability,with open-circuit voltage of 1.6 V and energy density of 300.2 Wh kg^(-1),surpassing the energy density of most previously reported aqueous SABs.In terms of application,these compact all-in-one QSSSABs can provide stable and reliable power support for portable small electronic devices(such as electronic players,diodes,and electronic watches).
基金supported by the Key Project of Natural Science Fund of Shandong Province,China(ZR2011 BZ008)the Special Fund of Marine Renewable Energy from State Ocean Bureau,China(GHME2011GD 04)
文摘Electrode materials have an important effect on the property of microbial fuel cell(MFC). Carbon foam is utilized as an anode and further modified by urea to improve its performance in marine benthic microbial fuel cell(BMFC) with higher voltage and output power. The electrochemical properties of plain carbon foam(PC) and urea-modified carbon foam(UC) are measured respectively. Results show that the UC obtains better wettability after its modification and higher anti-polarization ability than the PC. A novel phenomenon has been found that the electrical potential of the modified UC anode is nearly 100 m V lower than that of the PC, reaching-570 ±10 m V(vs. SCE), and that it also has a much higher electron transfer kinetic activity, reaching 9399.4 m W m-2, which is 566.2-fold higher than that from plain graphite anode(PG). The fuel cell containing the UC anode has the maximum power density(256.0 m W m-2) among the three different BMFCs. Urea would enhance the bacteria biofilm formation with a more diverse microbial community and maintain more electrons, leading to a lower anodic redox potential and higher power output. The paper primarily analyzes why the electrical potential of the modified anode becomes much lower than that of others after urea modification. These results can be utilized to construct a novel BMFC with higher output power and to design the conditioner of voltage booster with a higher conversion ratio. Finally, the carbon foam with a bigger pore size would be a potential anodic material in conventional MFC.
基金Supported by the National Natural Science Foundation of China (No.60436030)
文摘The state space average model and the large signal models of Pulse Skip Modulation (PSM) mode are given in this paper. Farther more, based on these models and simulations of PSM converter circuits, the analysis of the characteristics of PSM converter is described in this paper, of which include efficiency, frequency spectrum analysis, output voltage ripple, response speed and interference rejection capability. Compared with PWM control mode, PSM converter has high efficiency, especially with fight loads, quick response, good interference rejection and good EMC characteristic. Improved PSM slightly, it could be a kind of good independent regulating mode during the whole operating process for a DC-DC converter. Finally, some experimental results are also presented in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant No.11174358)the National Basic Research Program of China (Grant No.2010CB833102)
文摘We study the dynamics of two electron spins in coupled quantum dots (CQDs) monitored by a quantum point contact (QPC) detector. Their quantum state can be measured by embedding the QPC in an LC circuit. We derive the Bloch-type rate equations of the reduced density matrix for CQDs. Special attention is paid to the numerical results for the weak measurement condintion under a strong Coulomb interaction. It is shown that the evolution of QPC current always follows that of electron occupation in the right dot. In addition, we find that the output voltage of the circuit can reflect the evolution of QPC current when the circuit and QPC are approximately equal in frequency. In particular, the wave shape of the output voltage can be improved by adjusting the circuit resonance frequency and bandwidth.
文摘A dual mode charge pump to produce an adaptive power supply for a class G audio power amplifier is presented.According to the amplitude of the input signals,the charge pump has two level output voltage rails available to save power.It operates both in current mode at high output load and in pulse frequency modulation (PFM) at light load to reduce the power dissipation.Also,dynamic adjustment of the power stage transistor size based on load current at the PFM mode is introduced to reduce the output voltage ripple and prevent the switching frequency from audio range.The prototype is implemented in 0.18μm 3.3 V CMOS technology.Experimental results show that the maximum power efficiency of the charge pump is 79.5%@ 0.5x mode and 83.6%@ lx mode.The output voltage ripple is less than 15 mV while providing 120 mA of the load current at PFM control and less than 18 mV while providing 300 mA of the load current at current mode control.An analytical model for ripple voltage and efficiency calculation of the proposed PFM control demonstrates reasonable agreement with measured results.
基金supported by the National Natural Science Foundation of China(No.60876023)
文摘To meet the demands for a number of LEDs,a novel charge pump circuit with current mode control is proposed.Regulation is achieved by operating the current mirrors and the output current of the operational transconductance amplifier.In the steady state,the input current from power voltage retains constant,so reducing the noise induced on the input voltage source and improving the output voltage ripple.The charge pump small-signal model is used to describe the device’s dynamic behavior and stability.Analytical predictions were verified by Hspice simulation and testing.Load driving is up to 800 mA with a power voltage of 3.6 V,and the output voltage ripple is less than 45 mV.The output response time is less than 8μs,and the load current jumps from 400 to 800 mA.
文摘Resonant converter(RC)was brought under research in the 80’s widely,which can attain very small switching loss,therefore,facilitating resonant topologies to function at the high switching frequency.It is well addressed in the review that the optimal parameterization of the resonant converter is a crucial task.While the literature has come out with different methodologies,they are highly conceptual and so the uncertainty due to high theoretical impact persists.This paper intends to develop a Parameter Optimization(PO)algorithm for designing and developing of LLC-RC.The proposed algorithm overwhelms the limitation by introducing a nonconceptual model based on the simulated outcome.Specifically,the resonant current under start-up conditions is acquired from the literary outcome,and the intelligent model is constructed.Based on the proposed model,a renowned search algorithm called as Whale Optimization Algorithm(WOA)is exploited to optimize the time constant of the resonant converter,which is a critical design parameter.The objective model is derived as a function of start-up time and so the start-up time can be minimized.Moreover,the response speed of the output voltage is also increased.The proposed Whale Optimization Algorithm based Parameter Optimization(WOAPO)is compared with the conventional techniques such as IAPO,Ant Bee Colony-PO(ABC-PO),Particle Swarm Optimization-PO(PSOPO),FireFly PO(FFPO)and Grey Wolf Optimization(GWOPO).The obtained result verifies the performance of the proposed method in modeling LLC-RC system.
基金This research is supported by the National Natural Science Founda-tion of China(No.52176196)the National Key Research and Devel-opment Program of China(No.2022YFE0103100)+1 种基金the China Postdoctoral Science Foundation(No.2021TQ0235)the Hong Kong Scholars Program(No.XJ2021033).
文摘As a high efficiency hydrogen-to-power device,proton exchange membrane fuel cell(PEMFC)attracts much attention,especially for the automotive applications.Real-time prediction of output voltage and area specific resistance(ASR)via the on-board model is critical to monitor the health state of the automotive PEMFC stack.In this study,we use a transient PEMFC system model for dynamic process simulation of PEMFC to generate the dataset,and a long short-term memory(LSTM)deep learning model is developed to predict the dynamic per-formance of PEMFC.The results show that the developed LSTM deep learning model has much better perfor-mance than other models.A sensitivity analysis on the input features is performed,and three insensitive features are removed,that could slightly improve the prediction accuracy and significantly reduce the data volume.The neural structure,sequence duration,and sampling frequency are optimized.We find that the optimal sequence data duration for predicting ASR is 5 s or 20 s,and that for predicting output voltage is 40 s.The sampling frequency can be reduced from 10 Hz to 0.5 Hz and 0.25 Hz,which slightly affects the prediction accuracy,but obviously reduces the data volume and computation amount.
基金supported by the National Natural Science Foundation of China(Nos.61161003,61264001,61166004)the Guangxi Key Laboratory of Precision Navigation Technology and Application Foundation(No.DH201501)
文摘This paper presents a low power 8-bit 1 MS/s SAR ADC with 7.72-bit ENOB. Without an op-amp, an improved segmented capacitor DAC is proposed to reduce the capacitance and the chip area. A dynamic latch comparator with output offset voltage storage technology is used to improve the precision. Adding an extra positive feedback in the latch is to increase the speed. What is more, two pairs of CMOS switches are utilized to eliminate the kickback noise introduced by the latch. The proposed SAR ADC was fabricated in SMIC 0.18μm CMOS technology. The measured results show that this design achieves an SFDR of 61.8 dB and an ENOB of 7.72 bits, and it consumes 67.5μW with the FOM of 312 fJ/conversion-step at 1 MS/s sample under 1.8 V power supply.