期刊文献+
共找到311篇文章
< 1 2 16 >
每页显示 20 50 100
Statistical Diagnosis for HIV Dynamics Based on Mean Shift Outlier Model 被引量:1
1
作者 WU Ting LIU Sanyang ZHOU Jie 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第3期592-605,共14页
Ordinary differential equation(ODE) are widely used for quantifying HIV viral dynamics.It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. In this... Ordinary differential equation(ODE) are widely used for quantifying HIV viral dynamics.It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. In this study, the authors use the Mean Shift Outlier Model(MSOM) to detect outliers in HIV model based on the two-step estimation of ODE. Approximate formula for shift parameter is derived. Furthermore, a score test statistic is constructed and its approximating distribution is established. The simulation results show that: 1) The boundary points have more impact on the parameter estimation relative to interior points. 2) The proposed procedure can detect the outliers effectively. The authors illustrate the proposed approach using an application example from an HIV clinical trial and find similar pattern to the simulation studies. 展开更多
关键词 HIV dynamics local polynomial smoothing mean shift outlier model nonparametric regression.
原文传递
OUTLIER DETECTION AND RELIABILITY OF ADJUSTMENT MODELS WITH SINGULAR COVARIANCE MATRICES 被引量:3
2
作者 WANG Jinling CHENG Yongqi TAO Benzao 《Geo-Spatial Information Science》 1998年第1期55-59,共5页
Up to now,outlier detection and reliability theory are generallybased on the regular Gauss-Markov models,in which the covariance matrix of ob-servations is positively definite.For the adjustment models with singular c... Up to now,outlier detection and reliability theory are generallybased on the regular Gauss-Markov models,in which the covariance matrix of ob-servations is positively definite.For the adjustment models with singular covari-ance matrix,the statistics for outlier detection are derived by the authors.Thecorresponding reliability theory is developed.And the application of the theory isdemonstrated with a practical example. 展开更多
关键词 SINGULAR adjustment modelS outlierS RELIABILITY THEORY
在线阅读 下载PDF
OUTLIER TEST IN RANDOMIZED LINEAR MODEL 被引量:2
3
作者 XIANGLIMING SHILEI 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1994年第1期65-75,共11页
In this papert we give an approach for detecting one or more outliers inrandomized linear model.The likelihood ratio test statistic and its distributions underthe null hypothesis and the alternative hypothesis are giv... In this papert we give an approach for detecting one or more outliers inrandomized linear model.The likelihood ratio test statistic and its distributions underthe null hypothesis and the alternative hypothesis are given. Furthermore,the robustnessof the test statistic in a certain sense is proved. Finally,the optimality properties of thetest are derived. 展开更多
关键词 Randomized Linear model.outliers Likelihood Ratio Test UNIFORMLY
在线阅读 下载PDF
The assessment of the outliers of logistic regression model and its clinical application 被引量:1
4
作者 易东 许汝福 +1 位作者 张蔚 尹全焕 《Journal of Medical Colleges of PLA(China)》 CAS 1995年第1期61-62,66,共3页
On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the... On the basis of the newly developed regression diagnostic analysis, the diagnostic method with the assessment of the outliers of the logistic regression model was set up and it was used to analyze the prognosis of the patients with acute lymphatic leukemia. 展开更多
关键词 outlier LOGISTIC model leukemia LYMPHOBLASTIC prognosis regression analysis
暂未订购
Outlier Rejecting Multirate Model for State Estimation 被引量:1
5
作者 肖艳军 李建勋 薛阳 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第1期18-21,共4页
Wavelet transform was introduced to detect and eliminate outliers in time-frequency domain. The outlier rejection and multirate information extraction were initially incorporated by wavelet transform, a new outlier re... Wavelet transform was introduced to detect and eliminate outliers in time-frequency domain. The outlier rejection and multirate information extraction were initially incorporated by wavelet transform, a new outlier rejecting multirate model for state estimation was proposed. The model is applied to state estimation with interacting multiple model, as the outlier is eliminated and more reasonable multirate information is extracted, the estimation accuracy is greatly enhanced. The simulation results prove that the new model is robust to outliers and the estimation performance is significantly improved. 展开更多
关键词 wavelet transform outlier elimination multirate model
在线阅读 下载PDF
Application of Iterative Approaches in Modeling the Efficiency of ARIMA-GARCH Processes in the Presence of Outliers
6
作者 Emmanuel Alphonsus Akpan K. E. Lasisi +1 位作者 Ali Adamu Haruna Bakari Rann 《Applied Mathematics》 2019年第3期138-158,共21页
The study explored both Box and Jenkins, and iterative outlier detection procedures in determining the efficiency of ARIMA-GARCH-type models in the presence of outliers using the daily closing share price returns seri... The study explored both Box and Jenkins, and iterative outlier detection procedures in determining the efficiency of ARIMA-GARCH-type models in the presence of outliers using the daily closing share price returns series of four prominent banks in Nigeria (Skye (Polaris) bank, Sterling bank, Unity bank and Zenith bank) from January 3, 2006 to November 24, 2016. The series consists of 2690 observations for each bank. The data were obtained from the Nigerian Stock Exchange. Unconditional variance and kurtosis coefficient were used as criteria for measuring the efficiency of ARIMA-GARCH-type models and our findings revealed that kurtosis is a better criterion (as it is a true measure of outliers) than the unconditional variance (as it can be depleted or amplified by outliers). Specifically, the strength of this study is in showing the applicability and relevance of iterative methods in time series modeling. 展开更多
关键词 HETEROSCEDASTICITY KURTOSIS model EFFICIENCY outlierS Unconditional Variance VOLATILITY
暂未订购
Using Residual Estimators to Detect Outliers and Potential Controlling Observations in Structural Equation Modelling: QQ Plot Approach 被引量:1
7
作者 A. R. Abdul-Aziz Albert Luguterah Bashiru I. I. Saeed 《Open Journal of Statistics》 2020年第5期905-914,共10页
The structural equation model (SEM) concept is generally influenced by the presence of outliers and controlling variables. To a very large extent, this could have consequential effects on the parameters and the model ... The structural equation model (SEM) concept is generally influenced by the presence of outliers and controlling variables. To a very large extent, this could have consequential effects on the parameters and the model fitness. Though previous researches have studied outliers and controlling observations from various perspectives including the use of box plots, normal probability plots, among others, the use of uniform horizontal QQ plot is yet to be explored. This study is, therefore, aimed at applying uniform QQ plots to identifying outliers and possible controlling observations in SEM. The results showed that all the three methods of estimators manifest the ability to identify outliers and possible controlling observations in SEM. It was noted that the Anderson-Rubin estimator of QQ plot showed a more efficient or visual display of spotting outliers and possible controlling observations as compared to the other methods of estimators. Therefore, this paper provides an efficient way identifying outliers as it fragments the data set. 展开更多
关键词 outlierS Controlling Observations ESTIMATORS QQ Plots Structural Equation modelling
在线阅读 下载PDF
来自于Multiple-Outlier模型的最小次序统计量序性质(英文)
8
作者 程美芳 方龙祥 杨芳 《应用概率统计》 CSCD 北大核心 2017年第3期317-330,共14页
本文中,我们研究来自于两个multiple-outlier模型的最小次序统计量的随机比较,其中两个模型中独立同分布的随机变量个数不同.令X_(1:n)(p,q)和X_(1:n~*)(p~*,q~*)分别表示来自于X_1,…,X_p,X_(p+1),…,X_n和X_1,…,X_(p),X_(p~*+1),…,X... 本文中,我们研究来自于两个multiple-outlier模型的最小次序统计量的随机比较,其中两个模型中独立同分布的随机变量个数不同.令X_(1:n)(p,q)和X_(1:n~*)(p~*,q~*)分别表示来自于X_1,…,X_p,X_(p+1),…,X_n和X_1,…,X_(p),X_(p~*+1),…,X_(n)的最小次序统计量,这里q=n-p,q~*=n~*-p~*.在参数(p,q)和(p~*,q~*)满足某些优化序条件下,我们根据普通随机序,失效率序和似然比序给出了X_(1:n)(p,q)和X_(1:n~*)(p~*,q~*)的序比较. 展开更多
关键词 multiple-outlier模型 普通随机序 失效率序 似然比序 最小次序统计量 比例失效率模型
在线阅读 下载PDF
双向分类随机可加效应模型中可加性异常值(outlier)的检验
9
作者 王刚 石磊 《云南师范大学学报(自然科学版)》 1999年第4期3-9,共7页
在双向分类随机效应模型中,在实际应用时人们更感兴趣的是模型的可加性。此时异常值的出现是由于它偏离了模型的可加性假设。即数据中的少部分点偏离了模型的可加性。这在实际中是一个重要问题,同时也是本文所研究的内容。本文安排如... 在双向分类随机效应模型中,在实际应用时人们更感兴趣的是模型的可加性。此时异常值的出现是由于它偏离了模型的可加性假设。即数据中的少部分点偏离了模型的可加性。这在实际中是一个重要问题,同时也是本文所研究的内容。本文安排如下:第二节给出模型的介绍及问题的由来;第三节导出了可加性outlier的检验方法及检验统计量的精确分布,并给出双向分类随机效应模型中可加性异常的检验方法;第四节对相关问题进行了讨论。 展开更多
关键词 可加性 异常值 检验 随机效应模型 双向分类
在线阅读 下载PDF
Application of the Improved Generalized Autoregressive Conditional Heteroskedast Model Based on the Autoregressive Integrated Moving Average Model in Data Analysis 被引量:2
10
作者 Qi Yang Yishu Wang 《Open Journal of Statistics》 2019年第5期543-554,共12页
This study firstly improved the Generalized Autoregressive Conditional Heteroskedast model for the issue that financial product sales data have singular information when applying this model, and the improved outlier d... This study firstly improved the Generalized Autoregressive Conditional Heteroskedast model for the issue that financial product sales data have singular information when applying this model, and the improved outlier detection method was used to detect the location of outliers, which were processed by the iterative method. Secondly, in order to describe the peak and fat tail of the financial time series, as well as the leverage effect, this work used the skewed-t Asymmetric Power Autoregressive Conditional Heteroskedasticity model based on the Autoregressive Integrated Moving Average Model to analyze the sales data. Empirical analysis showed that the model considering the skewed distribution is effective. 展开更多
关键词 Forecasting outlierS IMPROVED GARCH model Partial T-APARCH model Based on ARIMA model
在线阅读 下载PDF
Statistical Diagnostic for Varying-Coefficient Single-Index Models Based on Empirical Likelihood Method 被引量:1
11
作者 王淑玲 邓小洪 廖大庆 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期493-496,共4页
Varying-coefficient single-index model( VCSIM) avoids the so-called "curse of dimensionality " and is flexible enough to include several important statistical models. This paper considers statistical diagnos... Varying-coefficient single-index model( VCSIM) avoids the so-called "curse of dimensionality " and is flexible enough to include several important statistical models. This paper considers statistical diagnosis for VCSIM. First,the parametric estimation equation is established based on empirical likelihood. Then,some diagnosis statistics are defined. At last, an example is given to illustrate all the results. 展开更多
关键词 varying-coefficient single-index model(VCSIM) empirical likelihood outlierS influence analysis
在线阅读 下载PDF
Bootstrap Approaches to Autoregressive Model on Exchange Rates Currency
12
作者 Muhamad Safiih Lola Anthea David Nurul Hila Zainuddin 《Open Journal of Statistics》 2016年第6期1010-1024,共15页
The use of historical data is important in making the predictions, for instance in the exchange rate. However, in the construction of a model, extreme data or dirtiness of data is inevitable. In this study, AR model i... The use of historical data is important in making the predictions, for instance in the exchange rate. However, in the construction of a model, extreme data or dirtiness of data is inevitable. In this study, AR model is used with the exchange rate historical data (January 2007 until December 2007) for USD/MYR and is divided into 1-, 3- and 6-horizontal months respectively. Since the presence of extreme data will affect the accuracy of the results obtained in a prediction. Therefore, to obtain a more accurate prediction results, the bootstrap approach was implemented by hybrid with AR model coins as the Bootstrap Autoregressive model (BAR). The effectiveness of the proposed model is investigated by comparing the existing and the proposed model through the statistical performance methods which are RMSE, MAE and MAD. The comparison involves 1%, 5% and 10% for each horizontal month. The results showed that the BAR model performed better than the AR model in terms of sensitivity to extreme data, the accuracy of forecasting models, efficiency and predictability of the model prediction. In conclusion, bootstrap method can alleviate the sensitivity of the model to the extreme data, thereby improving the accuracy of forecasting model which also have high prediction efficiency and that can increase the predictability of the model. 展开更多
关键词 Autoregressive model outlierS BOOTSTRAP ROBUST
在线阅读 下载PDF
Empirical Likelihood Diagnosis of Modal Linear Regression Models
13
作者 Shuling Wang Lin Zheng Jiangtao Dai 《Journal of Applied Mathematics and Physics》 2014年第10期948-952,共5页
In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is... In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. The empirical likelihood ratio function based on modal regression estimation method for the regression coefficient is introduced. First, the estimation equation based on empirical likelihood method is established. Then, some diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation study. 展开更多
关键词 MODAL LINEAR Regression model Empirical LIKELIHOOD outlierS Influence Analysis
在线阅读 下载PDF
Local Empirical Likelihood Diagnosis of Varying Coefficient Density-Ratio Models Based on Case-Control Data
14
作者 Shuling Wang Lin Zheng Jiangtao Dai 《Open Journal of Statistics》 2014年第9期751-756,共6页
In this paper, a varying-coefficient density-ratio model for case-control studies is developed. We investigate the local empirical likelihood diagnosis of varying coefficient density-ratio model for case-control data.... In this paper, a varying-coefficient density-ratio model for case-control studies is developed. We investigate the local empirical likelihood diagnosis of varying coefficient density-ratio model for case-control data. The local empirical log-likelihood ratios for the nonparametric coefficient functions are introduced. First, the estimation equations based on empirical likelihood method are established. Then, a few of diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation studies. 展开更多
关键词 Varying-Coefficient Density-Ratio model LOCAL Empirical Likelihood outliers Influence Analysis
在线阅读 下载PDF
Bayesian Diagnostic Checking of the Capital Asset Pricing Model
15
作者 Jun Li Shaun S. Wulff 《Journal of Applied Mathematics and Physics》 2018年第2期321-337,共17页
The capital asset pricing model (CAPM) is a commonly used regression model in finance to model stock returns. Bayesian methods have been developed for the CAPM to account for market fluctuations within the industry. H... The capital asset pricing model (CAPM) is a commonly used regression model in finance to model stock returns. Bayesian methods have been developed for the CAPM to account for market fluctuations within the industry. However, a Bayesian model checking procedure is needed to assess the CAPM in terms of the usual regression model assumptions of independence, homogeneity of variance, and normality. This paper develops Bayesian residuals and Bayesian p-values to check these model assumptions as well as to suggest model extensions to the CAPM. 展开更多
关键词 FINANCE model model Expansion Linear Regression NORMALITY outlier RESIDUAL
暂未订购
Identification Model for Needy Undergraduates Based on FFM
16
作者 Luwen Hu Xiaoyong Zhao +1 位作者 Shihao Fan Yufeng Gui 《Applied Mathematics》 2020年第1期8-22,共15页
In recent years, as the enrollment rate of Chinese colleges has increased year by year, the identification of needy undergraduates has become increasingly important. However, the traditional way to identify college st... In recent years, as the enrollment rate of Chinese colleges has increased year by year, the identification of needy undergraduates has become increasingly important. However, the traditional way to identify college students with financial difficulties mainly relies on manual review and collective voting, which easily causes subjectivity and randomness. To alleviate the problem above, this paper establishes an automatic identification model for needy undergraduates based on the 1842 questionnaires collected from undergraduates in WHUT. Firstly, this paper filters the questionnaire preliminary using the local outlier factor algorithm. Secondly, this paper combines mutual information, Spearman rank correlation coefficient and distance correlation coefficient by rank-sum ratio to select features for eliminating noise from irrelevant features. Thirdly, this paper trains filed-aware factor machine model and compares it with other models, such as Logistic Regression, SVM, etc. Eventually, this paper finds that filed-aware factor machine performers much better than other models in the identification of needy undergraduates, and prominent features affecting the identification of needy undergraduates are the year of the family income, cost of living provided parents, etc. 展开更多
关键词 Local outlier FACTOR Rank-Sum Ratio Field-Aware FACTOR Machine Identification model for Needy UNDERGRADUATES
在线阅读 下载PDF
基于混合模型的多类型机场航班过站时间预测 被引量:1
17
作者 李国 王伟倩 曹卫东 《计算机工程与设计》 北大核心 2025年第2期633-640,F0003,共9页
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。... 为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。 展开更多
关键词 多类型机场 航班过站时间预测 客流量差异 天气差异 混合轻量级梯度提升机算法模型 自适应鲁棒损失函数 离群值 麻雀搜索算法
在线阅读 下载PDF
基于空气质量监测站点间迟滞效应的监测异常值检测方法 被引量:1
18
作者 史烨挺 刘海江 +3 位作者 狄旸辰 袁烨城 高锡章 孙聪 《中国环境监测》 北大核心 2025年第2期201-209,共9页
检测空气污染物浓度监测数据中的异常值对于环境空气质量评价和提升研究具有重要意义。考虑到空气污染物监测数据在不同监测站点之间存在时空相关性和传输效应,该文提出了一种基于空气质量监测站点间迟滞效应的异常值检测方法,利用其估... 检测空气污染物浓度监测数据中的异常值对于环境空气质量评价和提升研究具有重要意义。考虑到空气污染物监测数据在不同监测站点之间存在时空相关性和传输效应,该文提出了一种基于空气质量监测站点间迟滞效应的异常值检测方法,利用其估算值与测量值之间的残差来检测空气污染物(以PM_(2.5)为例)监测数据中的异常值。针对北京市34个空气质量监测站2021年PM_(2.5)监测数据,用时空迟滞法对时间序列异常值进行实验检验,具有较好效果。与反距离加权法(IDW)、空间回归检验法(SRT)及时间序列低通滤波法进行对比,基于空气质量监测站点间迟滞效应的时空模型,可以根据空气质量监测站点间的时空关联性检测异常值,具有更高的检测精度。PM_(2.5)估算精度方面,当没有其他辅助变量时,基于空气质量监测站点间迟滞效应的时空模型相较于单纯基于空气污染物浓度监测数据在时间自相关性或者空间自相关性的方法上有更高的估算精度。 展开更多
关键词 空气污染物 PM_(2.5) 异常值检测 迟滞效应 时空模型
在线阅读 下载PDF
基于优化统计模型的混凝土坝变形异常值自适应识别
19
作者 肖晟 杨杰 +2 位作者 程琳 马春辉 徐笑颜 《水力发电学报》 北大核心 2025年第8期105-118,共14页
利用大坝变形监测数据构建安全监控模型,是定量分析大坝变形性态的重要方法。然而,大多现有的变形监控模型在影响因子优选和抗异常值干扰等方面存在显著不足。为此,本文提出了一种基于优化统计模型的混凝土坝变形异常值自适应识别方法,... 利用大坝变形监测数据构建安全监控模型,是定量分析大坝变形性态的重要方法。然而,大多现有的变形监控模型在影响因子优选和抗异常值干扰等方面存在显著不足。为此,本文提出了一种基于优化统计模型的混凝土坝变形异常值自适应识别方法,该方法能够在回归建模的同时识别异常值,从而避免数据清洗过程中因误删异常值而导致的监控模型失真。首先,引入贝叶斯模型选择技术,对影响混凝土坝变形的冗余因子进行约简,进而优选出统计建模过程中具有重要影响的解释变量;随后,采用最小截平方和估计对变形监测数据进行稳健回归分析,构建能够自适应识别不同异常类型的混凝土坝变形监控模型;最后,设计实现数据序列中各类异常值的可视化展示,以直观呈现异常位置及其潜在影响。工程应用实例表明,所提方法能够有效识别混凝土坝变形关键影响因子,自适应地克服不同异常类型对回归分析的干扰,从而使回归的显著性增强,拟合优度和预测精度提高,在监测数据异常检测及大坝安全性态的定量分析中具有良好的适用性。 展开更多
关键词 安全监测 混凝土坝 统计模型 异常值识别 最小截平方和估计 贝叶斯模型选择
在线阅读 下载PDF
半参数与支持向量机组合模型的BDS-3钟差预报 被引量:1
20
作者 潘雄 黄伟凯 +2 位作者 王聪 赵万卓 金丽宏 《武汉大学学报(信息科学版)》 北大核心 2025年第4期617-627,共11页
针对卫星钟差序列中非线性特性较为复杂的问题,为了有效地分离周期项改正误差和顾及不能函数化的因素,提高钟差预报的精度,将钟差周期项模型扩充到半参数模型。利用核估计方法将窗宽参数与模型参数解算综合考虑,建立了半参数变系数模型... 针对卫星钟差序列中非线性特性较为复杂的问题,为了有效地分离周期项改正误差和顾及不能函数化的因素,提高钟差预报的精度,将钟差周期项模型扩充到半参数模型。利用核估计方法将窗宽参数与模型参数解算综合考虑,建立了半参数变系数模型,综合支持向量机进行卫星钟差数据的参数解算、周期项改正分离、异常值识别和残差拟合。首先,利用泰勒展开式对非参数分量进行修正,引入核估计方法,建立了半参数变系数模型;然后,构造分值检验统计量进行异常值识别,提出了一种综合分值检验统计量的钟差异常值识别方法;最后,为了避免对观测值过拟合或拟合不足,对经过预处理的残差利用支持向量机进行拟合,提高模型的预报精度。采用北斗三号全球卫星导航系统(BeiDou-3 global navigation satellite system,BDS-3)的钟差数据与常用方法进行了对比实验,验证了新模型的可靠性。实验结果表明,建立的模型能够精确高效地对BDS-3钟差异常值进行定位,识别并分离周期项改正,有效地提高BDS-3钟差数据预处理的质量和效率。建立的组合模型预报精度优于传统的二次多项式模型、周期项模型和半参数模型,对于1 h、6 h和12 h预报,新模型的钟差数据的预报平均精度优于0.164 ns。 展开更多
关键词 BDS钟差 异常值 半参数变系数模型 支持向量机 组合预报
原文传递
上一页 1 2 16 下一页 到第
使用帮助 返回顶部