期刊文献+
共找到8,710篇文章
< 1 2 250 >
每页显示 20 50 100
Variable Projection Order Adaptive Filtering Algorithm for Self-interference Cancellation in Airborne Radars
1
作者 LI Haorui GAO Ying +1 位作者 GUO Xinyu OU Shifeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期497-508,共12页
The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in... The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference. 展开更多
关键词 adaptive filtering algorithm airborne radar variable projection order mean squared deviation self-interference cancellation
在线阅读 下载PDF
Stability analysis of distributed Kalman filtering algorithm for stochastic regression model
2
作者 Siyu Xie Die Gan Zhixin Liu 《Control Theory and Technology》 2025年第2期161-175,共15页
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi... The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example. 展开更多
关键词 Distributed Kalman filtering algorithm Stochastic cooperative information condition Sensor networks (L_(p))-exponential stability Stochastic regression model
原文传递
Weighted adaptive filtering algorithm for carrier tracking of deep space signal 被引量:8
3
作者 Song Qingping Liu Rongke 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1236-1244,共9页
Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is aut... Carrier tracking is laid great emphasis and is the difficulty of signal processing in deep space communication system.For the autonomous radio receiving system in deep space, the tracking of the received signal is automatic when the signal to noise ratio(SNR) is unknown.If the frequency-locked loop(FLL) or the phase-locked loop(PLL) with fixed loop bandwidth, or Kalman filter with fixed noise variance is adopted, the accretion of estimation error and filter divergence may be caused.Therefore, the Kalman filter algorithm with adaptive capability is adopted to suppress filter divergence.Through analyzing the inadequacies of Sage–Husa adaptive filtering algorithm, this paper introduces a weighted adaptive filtering algorithm for autonomous radio.The introduced algorithm may resolve the defect of Sage–Husa adaptive filtering algorithm that the noise covariance matrix is negative definite in filtering process.In addition, the upper diagonal(UD) factorization and innovation adaptive control are used to reduce model estimation errors,suppress filter divergence and improve filtering accuracy.The simulation results indicate that compared with the Sage–Husa adaptive filtering algorithm, this algorithm has better capability to adapt to the loop, convergence performance and tracking accuracy, which contributes to the effective and accurate carrier tracking in low SNR environment, showing a better application prospect. 展开更多
关键词 Adaptive algorithms Carrier tracking Deep space communicationKalman filters Tracking accuracy WEIGHTED
原文传递
Research on Kalman Filtering Algorithmfor Deformation Information Series ofSimilar Single-Difference Model 被引量:10
4
作者 吕伟才 徐绍铨 《Journal of China University of Mining and Technology》 2004年第2期189-194,199,共7页
Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcomin... Using similar single-difference methodology(SSDM) to solve the deformation values of the monitoring points, there is unstability of the deformation information series, at sometimes.In order to overcome this shortcoming, Kalman filtering algorithm for this series is established,and its correctness and validity are verified with the test data obtained on the movable platform in plane. The results show that Kalman filtering can improve the correctness, reliability and stability of the deformation information series. 展开更多
关键词 similar single-difference methodology GPS deformation monitoring single epoch deformation information series Kalman filtering algorithm
在线阅读 下载PDF
Collaborative Filtering Algorithms Based on Kendall Correlation in Recommender Systems 被引量:3
5
作者 YAO Yu ZHU Shanfeng CHEN Xinmeng 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1086-1090,共5页
In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of consider... In this work, Kendall correlation based collaborative filtering algorithms for the recommender systems are proposed. The Kendall correlation method is used to measure the correlation amongst users by means of considering the relative order of the users' ratings. Kendall based algorithm is based upon a more general model and thus could be more widely applied in e-commerce. Another discovery of this work is that the consideration of only positive correlated neighbors in prediction, in both Pearson and Kendall algorithms, achieves higher accuracy than the consideration of all neighbors, with only a small loss of coverage. 展开更多
关键词 Kendall correlation collaborative filtering algorithms recommender systems positive correlation
在线阅读 下载PDF
Amplitude phase control for electro-hydraulic servo system based on normalized least-mean-square adaptive filtering algorithm 被引量:5
6
作者 姚建均 富威 +1 位作者 胡胜海 韩俊伟 《Journal of Central South University》 SCIE EI CAS 2011年第3期755-759,共5页
The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorit... The electro-hydraulic servo system was studied to cancel the amplitude attenuation and phase delay of its sinusoidal response,by developing a network using normalized least-mean-square (LMS) adaptive filtering algorithm.The command input was corrected by weights to generate the desired input for the algorithm,and the feedback was brought into the feedback correction,whose output was the weighted feedback.The weights of the normalized LMS adaptive filtering algorithm were updated on-line according to the estimation error between the desired input and the weighted feedback.Thus,the updated weights were copied to the input correction.The estimation error was forced to zero by the normalized LMS adaptive filtering algorithm such that the weighted feedback was equal to the desired input,making the feedback track the command.The above concept was used as a basis for the development of amplitude phase control.The method has good real-time performance without estimating the system model.The simulation and experiment results show that the proposed amplitude phase control can efficiently cancel the amplitude attenuation and phase delay with high precision. 展开更多
关键词 amplitude attenuation phase delay normalized least-mean-square adaptive filtering algorithm tracking performance electro- hydraulic servo system
在线阅读 下载PDF
A novel fast classification filtering algorithm for LiDAR point clouds based on small grid density clustering 被引量:5
7
作者 Xingsheng Deng Guo Tang Qingyang Wang 《Geodesy and Geodynamics》 CSCD 2022年第1期38-49,共12页
Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in... Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in practice,making it impossible to cluster point clouds data directly,and the filtering error is also too large.Moreover,many existing filtering algorithms have poor classification results in discontinuous terrain.This article proposes a new fast classification filtering algorithm based on density clustering,which can solve the problem of point clouds classification in discontinuous terrain.Based on the spatial density of LiDAR point clouds,also the features of the ground object point clouds and the terrain point clouds,the point clouds are clustered firstly by their elevations,and then the plane point clouds are selected.Thus the number of samples and feature dimensions of data are reduced.Using the DBSCAN clustering filtering method,the original point clouds are finally divided into noise point clouds,ground object point clouds,and terrain point clouds.The experiment uses 15 sets of data samples provided by the International Society for Photogrammetry and Remote Sensing(ISPRS),and the results of the proposed algorithm are compared with the other eight classical filtering algorithms.Quantitative and qualitative analysis shows that the proposed algorithm has good applicability in urban areas and rural areas,and is significantly better than other classic filtering algorithms in discontinuous terrain,with a total error of about 10%.The results show that the proposed method is feasible and can be used in different terrains. 展开更多
关键词 Small grid density clustering DBSCAN Fast classification filtering algorithm
原文传递
Adaptive Median Filtering Algorithm Based on Divide and Conquer and Its Application in CAPTCHA Recognition 被引量:2
8
作者 Wentao Ma Jiaohua Qin +3 位作者 Xuyu Xiang Yun Tan Yuanjing Luo Neal NXiong 《Computers, Materials & Continua》 SCIE EI 2019年第3期665-677,共13页
As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and ... As the first barrier to protect cyberspace,the CAPTCHA has made significant contributions to maintaining Internet security and preventing malicious attacks.By researching the CAPTCHA,we can find its vulnerability and improve the security of CAPTCHA.Recently,many studies have shown that improving the image preprocessing effect of the CAPTCHA,which can achieve a better recognition rate by the state-of-theart machine learning algorithms.There are many kinds of noise and distortion in the CAPTCHA images of this experiment.We propose an adaptive median filtering algorithm based on divide and conquer in this paper.Firstly,the filtering window data quickly sorted by the data correlation,which can greatly improve the filtering efficiency.Secondly,the size of the filtering window is adaptively adjusted according to the noise density.As demonstrated in the experimental results,the proposed scheme can achieve superior performance compared with the conventional median filter.The algorithm can not only effectively detect the noise and remove it,but also has a good effect in preservation details.Therefore,this algorithm can be one of the most strong tools for various CAPTCHA image recognition and related applications. 展开更多
关键词 Image preprocessing machine learning CAPTCHA recognition adaptive median filtering algorithm.
在线阅读 下载PDF
Improved particle filtering techniques based on generalized interactive genetic algorithm 被引量:4
9
作者 Yan Zhang Shafei Wang Jicheng Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期242-250,共9页
This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this pa... This paper improves the resampling step of particle filtering(PF) based on a broad interactive genetic algorithm to resolve particle degeneration and particle shortage.For target tracking in image processing,this paper uses the information coming from the particles of the previous fame image and new observation data to self-adaptively determine the selecting range of particles in current fame image.The improved selecting operator with jam gene is used to ensure the diversity of particles in mathematics,and the absolute arithmetical crossing operator whose feasible solution space being close about crossing operation,and non-uniform mutation operator is used to capture all kinds of mutation in this paper.The result of simulating experiment shows that the algorithm of this paper has better iterative estimating capability than extended Kalman filtering(EKF),PF,regularized partide filtering(RPF),and genetic algorithm(GA)-PF. 展开更多
关键词 particle filtering(PF) particle degeneration particle shortage broad interactive genetic algorithm
在线阅读 下载PDF
WSN Mobile Target Tracking Based on Improved Snake-Extended Kalman Filtering Algorithm 被引量:1
10
作者 Duo Peng Kun Xie Mingshuo Liu 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期28-40,共13页
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte... A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively. 展开更多
关键词 wireless sensor network(WSN)target tracking snake optimization algorithm extended Kalman filter maneuvering target
在线阅读 下载PDF
Recommendation algorithm of cloud computing system based on random walk algorithm and collaborative filtering model 被引量:1
11
作者 Feng Zhang Hua Ma +1 位作者 Lei Peng Lanhua Zhang 《International Journal of Technology Management》 2017年第3期79-81,共3页
The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is... The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is proposed. The large data set and recommendation computation are decomposed into parallel processing on multiple computers. A parallel recommendation engine based on Hadoop open source framework is established, and the effectiveness of the system is validated by learning recommendation on an English training platform. The experimental results show that the scalability of the recommender system can be greatly improved by using cloud computing technology to handle massive data in the cluster. On the basis of the comparison of traditional recommendation algorithms, combined with the advantages of cloud computing, a personalized recommendation system based on cloud computing is proposed. 展开更多
关键词 Random walk algorithm collaborative filtering model cloud computing system recommendation algorithm
在线阅读 下载PDF
NONLINEAR FILTERING ALGORITHM FOR IN S INITIAL ALIGNMENT
12
作者 王丹力 张洪钺 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1999年第4期246-250,共5页
The initial alignment error equation of an INS (Inertial Navigation System) with large initial azimuth error has been derived and nonlinear characteristics are included. When azimuth error is fairly small, the nonline... The initial alignment error equation of an INS (Inertial Navigation System) with large initial azimuth error has been derived and nonlinear characteristics are included. When azimuth error is fairly small, the nonlinear equation can be reduced to a linear one. Extended Kalman filter, iterated filter and second order filter formulas are derived for the nonlinear state equation with linear measurement equation. Simulations results show that the accuracy of azimuth error estimation using extended Kalman filter is better than that of using standard Kalman filter while the iterated filter and second order filter can give even better estimation accuracy. 展开更多
关键词 algorithms Error analysis Inertial navigation systems Iterative methods Nonlinear equations Nonlinear filtering Parameter estimation
在线阅读 下载PDF
TRANSFORM DOMAIN CONJUGATE GRADIENT ALGORITHM FOR ADAPTIVE FILTERING
13
作者 S.C.Chan T.S.Ng 《Journal of Electronics(China)》 2000年第1期69-76,共8页
This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and ut... This paper proposed a new normalized transform domain conjugate gradient algorithm (NT-CGA), which applies the data independent normalized orthogonal transform technique to approximately whiten the input signal and utilises the modified conjugate gradient method to perform sample-by-sample updating of the filter weights more efficiently. Simulation results illustrated that the proposed algorithm has the ability to provide a fast convergence speed and lower steady-error compared to that of traditional least mean square algorithm (LMSA), normalized transform domain least mean square algorithm (NT- LMSA), Quasi-Newton least mean square algorithm (Q-LMSA) and time domain conjugate gradient algorithm (TD-CGA) when the input signal is heavily coloured. 展开更多
关键词 Adaptive filtering CONJUGATE GRADIENT algorithm ORTHOGONAL transform Channel EQUALIZATION ECHO CANCELLATION
在线阅读 下载PDF
Filtering algorithm of line structured light for long-distance obstacle detection
14
作者 邵海燕 张振海 李科杰 《Journal of Beijing Institute of Technology》 EI CAS 2016年第4期521-525,共5页
Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structure... Since unmanned ground vehicles often encounter concave and convex obstacles in wild ground, a filtering algorithm using line structured light to detect these long distance obstacles is proposed. For the line structured light image, a ranked-order based adaptively extremum median (RAEM) filter algorithm on salt and pepper noise is presented. In the algorithm, firstly effective points and noise points in a filtering window are differentiated; then the gray values of noise points are replaced by the medium of gray values of the effective pixels, with the efficient points' gray values unchanged; in the end this algorithm is proved to be efficient by experiments. Experimental resuits demonstrate that the image blur, resulting into proposed algorithm can remove noise points effectively and minimize the protecting the edge information as much as possible. 展开更多
关键词 unmanned ground vehicles line structured light concave and convex obstacles detec-tion ranked-order based adaptively extremum median (RAEM) filter filter algorithm
在线阅读 下载PDF
Research on Parameter Optimization in Collaborative Filtering Algorithm
15
作者 Zijiang Zhu 《Communications and Network》 2018年第3期105-116,共12页
Collaborative filtering algorithm is the most widely used and recommended algorithm in major e-commerce recommendation systems nowadays. Concerning the problems such as poor adaptability and cold start of traditional ... Collaborative filtering algorithm is the most widely used and recommended algorithm in major e-commerce recommendation systems nowadays. Concerning the problems such as poor adaptability and cold start of traditional collaborative filtering algorithms, this paper is going to come up with improvements and construct a hybrid collaborative filtering algorithm model which will possess excellent scalability. Meanwhile, this paper will also optimize the process based on the parameter selection of genetic algorithm and demonstrate its pseudocode reference so as to provide new ideas and methods for the study of parameter combination optimization in hybrid collaborative filtering algorithm. 展开更多
关键词 COLLABORATIVE filtering algorithm GENETIC algorithm PARAMETER COMBINATION Optimization
在线阅读 下载PDF
Distributed Filtering Algorithm Based on Tunable Weights Under Untrustworthy Dynamics 被引量:1
16
作者 Shiming Chen Xiaoling Chen +2 位作者 Zhengkai Pei Xingxing Zhang Huajing Fang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第2期225-232,共8页
Aiming at effective fusion of a system state estimate of sensor network under attack in an untrustworthy environment, distributed filtering algorithm based on tunable weights is proposed. Considering node location and... Aiming at effective fusion of a system state estimate of sensor network under attack in an untrustworthy environment, distributed filtering algorithm based on tunable weights is proposed. Considering node location and node influence over the network topology, a distributed filtering algorithm is developed to evaluate the certainty degree firstly. Using the weight reallocation approach, the weights of the attacked nodes are assigned to other intact nodes to update the certainty degree, and then the weight composed by the certainty degree is used to optimize the consensus protocol to update the node estimates. The proposed algorithm not only improves accuracy of the distributed filtering, but also enhances consistency of the node estimates. Simulation results demonstrate the effectiveness of the proposed algorithm. © 2014 Chinese Association of Automation. 展开更多
关键词 Data fusion Sensor networks Signal filtering and prediction
在线阅读 下载PDF
Study on the Heart Sound Signal Denoising Technology based on Integrated Filtering Algorithm
17
《International English Education Research》 2013年第12期93-95,共3页
In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise ... In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise from the new waveform. There are a lot of shortcomings in the use of such a method. The features of new waveform are difficult to be controlled, and thus the noise generated by the wave and the interference of wave will be disturbed by the filter to certain degree. In this paper, the integrated faltering algorithm is introduced, and a wave can be used in the studied use of small waveform, and also the high-order algorithm in mathematics is used, so that the frequency is controlled in a certain range, the frequency of heart sounds to be interfered is effectively reduced, and also the harmonic harm generated by the waveform is considered. After the signal sources are protected with some technologies, the effect of filtering and denoising is eventually achieved. 展开更多
关键词 Integrated filtering algorithm Heart Sounds Denoising Technology filtering algorithm
在线阅读 下载PDF
A Parallel String Searching Algorithm for Information Filtering
18
作者 Jin Shu(1),Liu Fengyu(2)(1.NAEG System Integration Engineering Co.Ltd,Nanjing,210003,P.R.China 2.Nanjing University of Science & Technology,Computer Science Department,210094,P.R.China) 《工程科学(英文版)》 2007年第3期82-90,100,共10页
Playing an increasingly important role in the security protection of the network information systems,the intrusion detection system(IDS) becomes a hotspot of research interest nowadays.However,this technology in the k... Playing an increasingly important role in the security protection of the network information systems,the intrusion detection system(IDS) becomes a hotspot of research interest nowadays.However,this technology in the kernel to many of these systems,namely string searching algorithm,has not received enough attention.By utilizing the concurrent mechanisms(multi-threading) provided by modern operation systems,such work can be divided symmetrically and thus improve the throughput of the corresponding application effectively.Presented in this work is a paralleled string searching algorithm-PBM,an algorithm based on the famous Boyer-Moore(BM) string searching algorithm.Taken as a dividable process,the string searching work is distributed between many cooperating threads of execution in the PBM algorithm,while each of them searches the target pattern in their respective share of the target strings.As compared with the traditional string searching algorithms,the PBM algorithm can do the pattern matching work faster by increasing the data processing throughput,thus adapting better to the drastic increase in the network band width.A simplification of the PBM algorithm that can be used as a multi-string searching algorithm is also suggested with supporting simulations,which is a promising approach when the number of target patterns is limited. 展开更多
关键词 STRING SEARCHING INFORMATION filtering PARALLEL algorithm PBM algorithm
在线阅读 下载PDF
An Improved Collaborative Filtering Algorithm and Application in Scenic Spot Recommendation
19
作者 Wanhong Bian Jintao Zhang +1 位作者 Jialin Li Lan Huang 《国际计算机前沿大会会议论文集》 2018年第2期21-21,共1页
关键词 COLLABORATIVE filtering algorithm USER profile SIMILARITY analysisTravel RECOMMENDATION
在线阅读 下载PDF
Hardware Architecture Design of Block-Matching and 3D-Filtering Denoising Algorithm
20
作者 张昊 刘文江 +2 位作者 王若琳 刘涛 戎蒙恬 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第2期173-183,共11页
Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performan... Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performance comes at the price of more similar blocks finding and filtering which bring high computation and memory access. Area, memory bandwidth and computation are the major bottlenecks to design a feasible architecture because of large frame size and search range. In this paper, we introduce a novel structure to increase data reuse rate and reduce the internal static-random-access-memory(SRAM) memory. Our target is to design a phase alternating line(PAL) or real-time processing chip of BM3 D. We propose an application specific integrated circuit(ASIC) architecture of BM3 D for a 720 × 576 BT656 PAL format. The feature of the chip is with 100 MHz system frequency and a 166-MHz 32-bit double data rate(DDR). When noise is σ = 25, we successfully realize real-time denoising and achieve about 10 d B peak signal to noise ratio(PSNR) advance just by one iteration of the BM3 D algorithm. 展开更多
关键词 block-matching and 3D-filtering(BM3D) denoising algorithm IMPLEMENTATION BLOCK-MATCHING 3D-filtering AGGREGATION
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部