Rice,a critical global staple crop,relies heavily on heading date,a key agronomic trait marking the transition from vegetative to reproductive growth.Understanding the genetic regulation of heading date is vital for e...Rice,a critical global staple crop,relies heavily on heading date,a key agronomic trait marking the transition from vegetative to reproductive growth.Understanding the genetic regulation of heading date is vital for enhancing the adaptability of high-quality rice varieties across diverse geographical regions and for bolstering local food security.In this study,we uncovered a novel role for OsCATA,a catalase gene,in the regulation of photoperiodic flowering in rice.We identified a novel allele of OsELF3.1,whose mutation resulted in delayed heading.Further analyses revealed that OsELF3.1 physically interacted with OsCATA.Notably,OsCATA exhibited rhythmic expression patterns similar to OsELF3.1 and,when mutated,also delayed flowering.Expression analyses showed that the delayed heading phenotype could be attributed to elevated Ghd7 expression under both long-day and short-day conditions,with OsCATA expression positively regulated by OsELF3.1.Double mutants of OsELF3.1 and OsCATA displayed a heading delay similar to that of oself3.1 single mutants.Additionally,OsELF3.1 could interact with Ghd7 in vivo,alleviating its suppression of Ehd1.Luciferase assays confirmed that Ghd7 repressed Ehd1 expression,while OsELF3.1 mitigated this repression.Collectively,our findings reveal that OsCATA is critical in suppressing Ghd7 expression through the OsELF3.1-OsCATA-Ghd7 transcriptional pathway,thereby regulating rice heading.展开更多
基金funded by the Biological Breeding-National Science and Technology Major Projects,China(Grant No.2023ZD04066)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LZ24C130006,LTGN24C130007)+5 种基金the Open Project Program of the State Key Laboratory of Rice Biology and Breeding,China(Grant No.20240107)the Xi’nan League Science and Technology Project,China(Grant No.2023DXZD0001)the Joint Research and Development Program on Rice Breeding in Inner Mongolia Autonomous Region,China(Grant No.YZ2023004)the China Agriculture Research System(Grant No.CARS-01)the Central Public-interest Scientific Institution Basal Research Fund,China(Grant No.CPSIBRF-CNRRI-202301)the Agricultural Science and Technology Innovation Program(ASTIP).
文摘Rice,a critical global staple crop,relies heavily on heading date,a key agronomic trait marking the transition from vegetative to reproductive growth.Understanding the genetic regulation of heading date is vital for enhancing the adaptability of high-quality rice varieties across diverse geographical regions and for bolstering local food security.In this study,we uncovered a novel role for OsCATA,a catalase gene,in the regulation of photoperiodic flowering in rice.We identified a novel allele of OsELF3.1,whose mutation resulted in delayed heading.Further analyses revealed that OsELF3.1 physically interacted with OsCATA.Notably,OsCATA exhibited rhythmic expression patterns similar to OsELF3.1 and,when mutated,also delayed flowering.Expression analyses showed that the delayed heading phenotype could be attributed to elevated Ghd7 expression under both long-day and short-day conditions,with OsCATA expression positively regulated by OsELF3.1.Double mutants of OsELF3.1 and OsCATA displayed a heading delay similar to that of oself3.1 single mutants.Additionally,OsELF3.1 could interact with Ghd7 in vivo,alleviating its suppression of Ehd1.Luciferase assays confirmed that Ghd7 repressed Ehd1 expression,while OsELF3.1 mitigated this repression.Collectively,our findings reveal that OsCATA is critical in suppressing Ghd7 expression through the OsELF3.1-OsCATA-Ghd7 transcriptional pathway,thereby regulating rice heading.