CALCINEURIN B-LIKE PROTEINS(CBLs)function in osmotic stress responses,root morphogenesis and ion uptake in various plants such as Arabidopsis.However,the roles of Os CBLs in regulating root growth in rice(Oryza sativa...CALCINEURIN B-LIKE PROTEINS(CBLs)function in osmotic stress responses,root morphogenesis and ion uptake in various plants such as Arabidopsis.However,the roles of Os CBLs in regulating root growth in rice(Oryza sativa),whose root morphology and growth environment strongly differ from those of Arabidopsis,are unknown.Here,we demonstrated that Os CBL3 functioned as a calcium sensor to regulate primary and lateral root development in rice.Os CBL3 interacted with Os CIPK31 in vivo and in vitro,and the loss of function of Os CBL3 or Os CIPK31 resulted in shorter roots and diminished lateral root growth.Overexpression of Os CIPK31 compensated for the root growth defects of Os CBL3 knockout mutants.These results demonstrated that the Os CBL3–Os CIPK31 module coordinated root development via the abscisic acid(ABA)and auxin pathways,as ABA inhibitors and low auxin concentrations partially rescued the short-root phenotype of their respective knockout lines.CYCLOPHYLIN 2(Os CYP2),a key factor in lateral root initiation and root growth maintenance,was phosphorylated by Os CIPK31,and knockout of Os CYP2 in Os CIPK31 overexpression lines resulted in a phenotype similar to that of Os CYP2 single knockout lines.Therefore,the Os CBL3–Os CIPK31 module functioned in ABA and auxin signal transduction,ensuring proper root growth.Os CIPK31,activated by Os CBL3,then phosphorylated Os CYP2,which drove primary and lateral root development.These results establish a new module regulating primary and lateral root development in rice.展开更多
基金the Sichuan Science and Technology Program(2023NSFSC1933,2022ZDZX0016,2021YFYZ0016)the Chengdu Science and Technology Bureau(2022-YF09-00036-SN)+1 种基金the free exploration project of the State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China(SKL-ZY202214)the Changde Science and Technology Bureau(changkehan 2021–59)。
文摘CALCINEURIN B-LIKE PROTEINS(CBLs)function in osmotic stress responses,root morphogenesis and ion uptake in various plants such as Arabidopsis.However,the roles of Os CBLs in regulating root growth in rice(Oryza sativa),whose root morphology and growth environment strongly differ from those of Arabidopsis,are unknown.Here,we demonstrated that Os CBL3 functioned as a calcium sensor to regulate primary and lateral root development in rice.Os CBL3 interacted with Os CIPK31 in vivo and in vitro,and the loss of function of Os CBL3 or Os CIPK31 resulted in shorter roots and diminished lateral root growth.Overexpression of Os CIPK31 compensated for the root growth defects of Os CBL3 knockout mutants.These results demonstrated that the Os CBL3–Os CIPK31 module coordinated root development via the abscisic acid(ABA)and auxin pathways,as ABA inhibitors and low auxin concentrations partially rescued the short-root phenotype of their respective knockout lines.CYCLOPHYLIN 2(Os CYP2),a key factor in lateral root initiation and root growth maintenance,was phosphorylated by Os CIPK31,and knockout of Os CYP2 in Os CIPK31 overexpression lines resulted in a phenotype similar to that of Os CYP2 single knockout lines.Therefore,the Os CBL3–Os CIPK31 module functioned in ABA and auxin signal transduction,ensuring proper root growth.Os CIPK31,activated by Os CBL3,then phosphorylated Os CYP2,which drove primary and lateral root development.These results establish a new module regulating primary and lateral root development in rice.