The China Society for Human Rights Studies (CSHRS) organized on Nov. 28 a forum to study and implement the guidelines of the third plenary session of the 18th Central Committee of the Communist Party of China (CPC...The China Society for Human Rights Studies (CSHRS) organized on Nov. 28 a forum to study and implement the guidelines of the third plenary session of the 18th Central Committee of the Communist Party of China (CPC). Executive members of CSHRS and other CSHRS members in Beijing discussed improvement of judicial protection for human rights and legal construction in China. CSHRS President Luo Haocai, who was vice chairman of the 10th National Committee of the Chinese People's Political Consultative Conference, delivered a speech at the forum.展开更多
During Jun.14–16,2019,the 13th IACP(International Association for China Planning)Conference was held in Southwest Jiaotong University,Chengdu,China.The theme of the conference was'Sharing Cities:Challenges and Re...During Jun.14–16,2019,the 13th IACP(International Association for China Planning)Conference was held in Southwest Jiaotong University,Chengdu,China.The theme of the conference was'Sharing Cities:Challenges and Responses to New Urban Plan-Planning.”Shen Zhongwei,Party Secretary of School of Architecture and Design,Southwest Jiaotong University hosted the opening ceremony.展开更多
Along with decrease of fine particulate matter(PM_(2.5))concentration in recent years in China,secondary species become increasingly important.This work focuses on characterizing secondary components,and a few importa...Along with decrease of fine particulate matter(PM_(2.5))concentration in recent years in China,secondary species become increasingly important.This work focuses on characterizing secondary components,and a few important groups of organics including organic nitrogen(ON),organonitrates(OrgN),organosulfates(OS)and polycyclic aromatic hydrocarbons(PAHs),via online measurement of submicron aerosols(PM_(1))in Nanjing,China,during 2022 summer.The average PM_(1) concentration was 15.39μg/m^(3),dominated by secondary components(69.1%),which were even more important at higher PM_(1) levels.The primary organic aerosols(POA)were from traffic,industry and cooking;the two secondary OA factors were both closely linked with photochemistry,with one(OOA1)being relatively fresh and important in early afternoon and another(OOA2)being aged and important in late afternoon.Sulfate formation was also governed by photochemistry but resembled that of OOA2 not OOA1;nitrate formation was associated strongly with heterogeneous hydrolysis and thermodynamic equilibrium.Results also reveal a possible photochemical reaction channel from POA to OOA1,then to OOA2.Case studies show that formations of secondary components responded differently to different weather conditions and governed summer PM_(1) pollution.The average ON,OrgN,OS and PAHs concentrations were determined to be 122.8,84.4,45.6 and 3.3 ng/m^(3),respectively.ON was dominated by primary sources(53.8%).OrgN varied similarly to nitrate.OS formation was linked with aqueous-phase reactions,which were insignificant therefore its level was low.PAHs was mainly from traffic,and photochemical oxidation might be its important sink during afternoon.展开更多
Temperature has a substantial impact on the emission of biogenic volatile organic compounds(BVOCs).Moder-ate warm temperatures,e.g.,30–40°C,could boost plant metabolism,increasing BVOC emissions.Against the back...Temperature has a substantial impact on the emission of biogenic volatile organic compounds(BVOCs).Moder-ate warm temperatures,e.g.,30–40°C,could boost plant metabolism,increasing BVOC emissions.Against the backdrop of global warming,plants emit more BVOCs to cope with thermal stress,leading to elevated concen-trations of tropospheric ozone(O_(3))and secondary organic aerosols(SOA).In recent years,a considerable body of research has explored the interaction between tree species and BVOCs under the influence of various environ-mental factors.Although many studies have examined explored the temperature dependence of BVOC emissions in the past,few studies have conducted a comprehensive and in-depth investigation into the impacts of tempera-ture.This review summarizes the relevant studies on BVOCs in the past decade,including the main biosynthetic pathways,emission observation techniques and emission inventories,as well as how temperature affects isoprene and monoterpene emission rates and the formation of O_(3) and SOA.Our work offers a theoretical foundation and guidance for future efforts to advance the comprehension of BVOC emission characteristics and develop strategies to mitigate secondary pollution.展开更多
Microplastic contamination has emerged as a threat in transplantation,with evidence of its presence in human tissues and potential to compromise grafts.Transplant recipients,vulnerable due to immunosuppression and sur...Microplastic contamination has emerged as a threat in transplantation,with evidence of its presence in human tissues and potential to compromise grafts.Transplant recipients,vulnerable due to immunosuppression and surgical exposure,face risk from microplastics via airborne particles,surgical materials,and organ preservation systems.These particles trigger inflammation,oxidative stress,and immune dysregulation—pathways critical in rejection.Microplastics support biofilm formation,potentially facilitating antimicrobial resistance in clinical settings.Despite this risk,transplant-specific research is lacking.We urge action through environmental controls,material substitutions,and procedural modifications,alongside research targeting exposure pathways,biological impact,and mitigation strategies.Transplantation has historically led medical innovation and must do so in confronting this environmental challenge.Leadership from global transplant societies is essential to protect recipients and ensure safe procedures.展开更多
Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
Organic photovoltaics(OPVs)have achieved remarkable progress,with laboratory-scale single-junction devices now demonstrating power conversion efficiencies(PCEs)exceeding 20%.However,these efficiencies are highly depen...Organic photovoltaics(OPVs)have achieved remarkable progress,with laboratory-scale single-junction devices now demonstrating power conversion efficiencies(PCEs)exceeding 20%.However,these efficiencies are highly dependent on the thickness of the photoactive layer,which is typically around 100 nm.This sensitivity poses a challenge for industrial-scale fabrication.Achieving high PCEs in thick-film OPVs is therefore essential.This review systematically examines recent advancements in thick-film OPVs,focusing on the fundamental mechanisms that lead to efficiency loss and strategies to enhance performance.We provide a comprehensive analysis spanning the complete photovoltaic process chain:from initial exciton generation and diffusion dynamics,through dissociation mechanisms,to subsequent charge-carrier transport,balance optimization,and final collection efficiency.Particular emphasis is placed on cutting-edge solutions in molecular engineering and device architecture optimization.By synthesizing these interdisciplinary approaches and investigating the potential contributions in stability,cost,and machine learning aspects,this work establishes comprehensive guidelines for designing high-performance OPVs devices with minimal thickness dependence,ultimately aiming to bridge the gap between laboratory achievements and industrial manufacturing requirements.展开更多
Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pell...Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.展开更多
BACKGROUND Organ transplantation has emerged as a globally prevalent therapeutic modality for end-stage organ failure,yet the post-transplantation trajectory is increasingly complicated by a spectrum of metabolic sequ...BACKGROUND Organ transplantation has emerged as a globally prevalent therapeutic modality for end-stage organ failure,yet the post-transplantation trajectory is increasingly complicated by a spectrum of metabolic sequelae,with obesity emerging as a critical clinical challenge.AIM To systematically review the multifactorial mechanisms underlying obesity following organ transplantation and to integrate evidence from pharmacological,behavioral,and molecular perspectives,thereby providing a foundation for targeted interventions.METHODS We conducted a systematic search in PubMed and Web of Science for literature published from 2020 to 15 July 2025.The search strategy incorporated terms including“obesity”,“overweight”and“post organ transplantation”.Only randomized controlled trials,meta-analyses,and systematic reviews were included.Non-empirical publications and irrelevant studies were excluded.Data extraction and quality assessment were performed by two independent reviewers,with disagreements resolved by a third researcher.RESULTS A total of 1457 articles were initially identified,of which 146 met the inclusion criteria.These studies encompassed liver,kidney,heart,and lung transplant recipients.Key findings indicate that immunosuppressive drugs-especially corticosteroids and calcineurin inhibitors-promote hyperphagia,insulin resistance,and dyslipidemia.Post-transplant sedentary behavior and hypercaloric diets further contribute to positive energy balance.At the molecular level,immunosuppressants disrupt adipokine signaling(e.g.,leptin and adiponectin),induce inflammatory and oxidative stress responses,and activate adipogenic pathways leading to lipid accumulation.CONCLUSION Post-transplant obesity arises from a complex interplay of pharmacological,behavioral,and molecular factors.A multidisciplinary approach-incorporating pharmacological modification,nutritional management,physical activity,and molecular-targeted therapies-is essential to mitigate obesity and improve transplant outcomes.Further large-scale and mechanistic studies are warranted to establish evidence-based preventive and treatment strategies.展开更多
Effective control of gas-phase pollutants(volatile organic compounds(VOCs)and CO)is critical to human health and the ecological environment.Catalytic oxidation is one of the most promising technologies for achieving e...Effective control of gas-phase pollutants(volatile organic compounds(VOCs)and CO)is critical to human health and the ecological environment.Catalytic oxidation is one of the most promising technologies for achieving efficient volatile organic compounds and CO emission control.The subnano cluster catalyst can not only provide catalytic sites with multiple metal atoms,but also maintain full utilization efficiency.Almost all metal atoms in highly dispersed clusters can be used for adsorption and conversion of reactants.Recently,various types of sub-nano clusters,including subnano cluster oxides,have been developed and demonstrated excellent performance in low-temperature gas-phase pollutants combustion.In this mini review,we systematically summarize the structure,physicochemical properties,characterization,and applications of sub-nano cluster catalysts in catalytic oxidation of CO,methane,propane,propylene,toluene and its derivatives,formaldehyde and chlorinated volatile organic compounds.Finally,we have analyzed and discussed the problems and challenges faced by sub-nano cluster catalysts in both basic research and practical applications,providing a scientific basis for the design,synthesis,and application of efficient heterogeneous catalysts for CO and VOCs oxidation.展开更多
Enhancing the activity of fragile enzymes is greatly useful for various purposes,including fabrication of enzyme-based immunosensors.Herein,we report a defect-engineering strategy for encapsulating enzymes within cova...Enhancing the activity of fragile enzymes is greatly useful for various purposes,including fabrication of enzyme-based immunosensors.Herein,we report a defect-engineering strategy for encapsulating enzymes within covalent organic frameworks(COFs),enabling the resulting immobilized enzymes with excellent catalytic activity and stability to construct high performance immunosensors.In this design,by consciously introducing monoaldehyde ligands into the imine-linked COFs structure,we have precisely customized the structural defects to improve enzyme loading capacity and conformational stability.Defect-engineering interaction modulation between enzymes and COFs drives the enhancement of catalytic performance.Compared to the pristine COFs,the enzyme@defective COFs composites with optimally tuned catalytic performance exhibit a 4.49-fold enhancement in enzymatic activity.Furthermore,it is demonstrated that the stable skeletons of COFs provide exceptional protection for the enzymes against external perturbations.Thereafter,the optimized enzyme@defective COFs are employed to fabricate immunosensor.We have successfully established a detection method for prostate-specific antigen(PSA),achieving a low detection limit of 0.09 ng/mL.More importantly,the developed immunosensor has successfully distinguished the prostate cancer patients from healthy individuals.This work establishes a novel paradigm for enzyme immobilization,ultimately empowering the construction of a PSA immunosensor with high sensitivity,remarkable operational stability,and great clinical application potential.展开更多
Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibite...Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts.展开更多
A trace analytical method based on solid-phase extraction gas chromatography-tandem mass spectrometry(SPE–GC–MS/MS)was developed for the rapid detection of 256 semi-volatile organic compounds(SVOCs),including 25 pol...A trace analytical method based on solid-phase extraction gas chromatography-tandem mass spectrometry(SPE–GC–MS/MS)was developed for the rapid detection of 256 semi-volatile organic compounds(SVOCs),including 25 polycyclic aromatic hydrocarbons(PAHs),70 polychlorinated biphenyls(PCBs),123 pesticides,20 phthalate esters(PAEs),4 organophosphate esters(OPEs),9 synthetic musks(SMs),and 5 UV filters(UVs)in water.No-tably,this method provided a decent linearity of calibration standards(R^(2)>0.999),excellent method limits of quantification(MLOQs)(0.12–11.41 ng/L),satisfactory matrix spiking recovery rates(60.4%–126%),and high precision(intra-day relative standard deviations(RSDs):1.0%–10.0%,inter-day RSDs:3.0%–15.0%,and inter-week RSDs:3.4%–15.7%),making it suitable for trace-level studies.Statistical analysis revealed that SVOCs with higher volatility exhibited enhanced recovery rates.Validation of the methodology involved analyzing SVOCs in real spring water and river water samples.Twenty-seven SVOCs were detected in spring water and 58 in river water,with an average concentration of 631.73 and 16,095 ng/L,respectively.Among the detected SVOCs,PAEs constituted the predominant proportion.This study underscored the presence of SVOCs contamination specifi-cally within the spring water,although SVOCs concentrations in river water were significantly greater than those found in spring water.In summary,this sensitive method based on SPE–GC–MS/MS was successfully developed and validated for the rapid analysis of a diverse array of 256 SVOCs at trace levels in water,including not only the traditional highly valued PAHs,PCBs,pesticides,and PAEs,but also the emerging OPEs,UVs,and SMs.展开更多
GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a ...GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein–protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.展开更多
Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosupp...Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.展开更多
Constructing catalysts featuring an ordered structure,stable performance,and uniformly dispersed catalytic sites is vital for the epoxidation of small-molecular olefins.Here,we design catalysts by tracing the oxidatio...Constructing catalysts featuring an ordered structure,stable performance,and uniformly dispersed catalytic sites is vital for the epoxidation of small-molecular olefins.Here,we design catalysts by tracing the oxidationprocess origin and synthesize a series of highly dispersed metal porphyrin-based covalent organic frameworks(COFs)materials.The aim is to efficiently oxidize the C-H bonds of cumene by air to in-situ generate organic peroxides at a safe concentration,and integrate the multi-step oxidation method of cumene in industry into a one-step method for olefins’epoxidation.The carbonyl-ruthenium COF(Ru-COF-1)exhibits excellent performance,with 98% epoxide selectivity,1221.77 h^(-1) productivity,and over 95% selectivity after 9 cycles for 1-hexene.Analysis of structure-properties-catalytic relationships of Ru-COF-1 shows that,compared with Ru-porphyrins and metal-free COFs,the enhanced reaction performance mainly results from Ru metal introduction,which promotes benzylic proton transfer in cumene.Besides,Ru-COF-1’s porous,ordered structure aids oxygen enrichment,forming active peroxy radicals with the cumene carboncentered radicals formed on the catalyst surface.Ru-H sites then accelerate active oxygen transfer from peroxy radicals,enabling olefin tandem epoxidation.Density functional theory(DFT)calculations verify the reaction mechanism,and this work offers a reference for the design of catalysts for the green,safe,and efficient oxidation of olefins.展开更多
A series of dual-extended-polyhedral metal-organic frameworks(MOFs)was constructed based on the 14-coordinated Cu_(24)-MOP-1(MOP=metal-organic polyhedron)supermolecular building blocks(SBBs)with enhanced stability and...A series of dual-extended-polyhedral metal-organic frameworks(MOFs)was constructed based on the 14-coordinated Cu_(24)-MOP-1(MOP=metal-organic polyhedron)supermolecular building blocks(SBBs)with enhanced stability and tunable functionality for high water uptake efficiency and capacity.Exceptional water stability was demonstrated by the retention of chemical integrity and crystallinity of USC-CP-5(where USC-CP stands for University of South China coordination polymer)after exposure to boiling water for 24 h.Functionalization with-Cl,-OCH_(3),-OH,and-NH_(2)groups of USC-CP-5 resulted in water uptake capacities of 450,460,490,and 590 cm^(3)·g^(-1) at relative pressure(P/P_(0))=0.9,respectively.This performance is ascribed to both the increased hydrophilicity of the ligands and stronger hydrogen bonding.Intriguingly,high-temperature activated USC-5-NH_(2)exhibits a significant water uptake of 38.5 wt.%at P/P_(0)=0.3 and releases 0.44 L·kg^(-1) water between 25 and 65℃.This water release process is reversible for at least 100 cycles with minimal weight loss of only 1.6 wt.%.Consequently,USC-5-NH_(2)holds considerable potential for harvesting and releasing atmospheric water in arid desert regions,powered by solar energy.展开更多
A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamin...A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamino side groups,TT-Ph-C6 demonstrates excellent solubility and its crystal structure exhibits compact packing structures with a three-dimensional molecular stacking network.These structural attributes markedly promote exciton diffusion and charge carrier mobility,particularly advantageous for the fabrication of thick-film devices.TT-Ph-C6-based devices have attained a PCE of 18.01%at a film thickness of 100 nm,and even at a film thickness of 300 nm,the PCE remains at 14.64%,surpassing that of devices based on 2BTh-2F.These remarkable properties position TT-Ph-C6 as a highly promising NFREA material for boosting the efficiency of OSCs.展开更多
The Ru-based catalysts with different preparation methods or supports were achieved and applied in efficientlycatalytic elimination of 1,2-dichloroethane(1,2-DCE).It wasfirstly found that the redox ability and chlorine...The Ru-based catalysts with different preparation methods or supports were achieved and applied in efficientlycatalytic elimination of 1,2-dichloroethane(1,2-DCE).It wasfirstly found that the redox ability and chlorine re-sistance of the catalyst could be improved by regulating the interaction between Ru and supports.Compared withother supports and conventionally impregnated methods,the Ru@ZSM-5 catalyst synthesized by the in-situ en-capsulation strategy exhibited an excellent low-temperature catalytic performance(T50=262°C,T90=327℃),superior stability in long-term test as well as ideal target products.The acidity,specific surface area,and in-teraction with precious metals of the supports have significant influences on the catalytic activity,and the Ruclusters inside the pore structures are more closely bound to the framework Al species,which promotes theoxidation behavior.The encapsulation strategy also significantly improves the Ru dispersion thereby facilitatesoxygen activation as well as Cl-containing volatile organic compounds(CVOCs)deep oxidation,and preserveslarge amounts of Brønsted acid sites to optimize the hydrolysis mechanism for purification of CVOCs.Subse-quently,the synergistic effect between metal redox and acidity is greatly optimized,thus extremely promotingthe catalytic efficiency of 1,2-DCE oxidation.展开更多
Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previo...Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previous research,providing a long-term perspective on carbonyl compound variations and their environmental implica-tions.Atmospheric observations were conducted at Beijing(BJ)and Xianghe(XH)during the summer and winter months of 2018,2019,and 2023 to study the sources and impacts of carbonyl compounds in typical urban areas and peri‑urban areas.Notably,concentrations in the summer of 2023 increased compared to 2018 and 2019.The predominant carbonyl compounds—formaldehyde,acetaldehyde,and acetone—accounted for over 60%of the total.The mean values of OFP in BJ ranged from 18.55 to 58.61μg/m3,lower than those in XH(29.82 to 65.48μg/m3),with formaldehyde and acetaldehyde contributing over 80%of the total.SOAP exhibited a similar pattern,with values in XH(69.21 to 508.55μg/m3)significantly exceeding those in BJ(34.47 to 159.78μg/m3).The PMF model highlighted vehicle exhaust,secondary pollution,and biomass combustion as major sources of carbonyl compounds,emphasizing differences in source contributions between the two regions.This study’s com-parative analysis over different years and locations provides new insights into the dynamic changes in carbonyl compounds and their environmental importance.These results not only reinforce the importance of carbonyl compounds regulation but also offer a valuable reference for evaluating and refining emission control strategies during this period.展开更多
文摘The China Society for Human Rights Studies (CSHRS) organized on Nov. 28 a forum to study and implement the guidelines of the third plenary session of the 18th Central Committee of the Communist Party of China (CPC). Executive members of CSHRS and other CSHRS members in Beijing discussed improvement of judicial protection for human rights and legal construction in China. CSHRS President Luo Haocai, who was vice chairman of the 10th National Committee of the Chinese People's Political Consultative Conference, delivered a speech at the forum.
文摘During Jun.14–16,2019,the 13th IACP(International Association for China Planning)Conference was held in Southwest Jiaotong University,Chengdu,China.The theme of the conference was'Sharing Cities:Challenges and Responses to New Urban Plan-Planning.”Shen Zhongwei,Party Secretary of School of Architecture and Design,Southwest Jiaotong University hosted the opening ceremony.
基金supported by the National Natural Science Foundation of China(Nos.22361162668 and 42021004)the National Key Research and Development Program of China(No.2023YFC3706203).
文摘Along with decrease of fine particulate matter(PM_(2.5))concentration in recent years in China,secondary species become increasingly important.This work focuses on characterizing secondary components,and a few important groups of organics including organic nitrogen(ON),organonitrates(OrgN),organosulfates(OS)and polycyclic aromatic hydrocarbons(PAHs),via online measurement of submicron aerosols(PM_(1))in Nanjing,China,during 2022 summer.The average PM_(1) concentration was 15.39μg/m^(3),dominated by secondary components(69.1%),which were even more important at higher PM_(1) levels.The primary organic aerosols(POA)were from traffic,industry and cooking;the two secondary OA factors were both closely linked with photochemistry,with one(OOA1)being relatively fresh and important in early afternoon and another(OOA2)being aged and important in late afternoon.Sulfate formation was also governed by photochemistry but resembled that of OOA2 not OOA1;nitrate formation was associated strongly with heterogeneous hydrolysis and thermodynamic equilibrium.Results also reveal a possible photochemical reaction channel from POA to OOA1,then to OOA2.Case studies show that formations of secondary components responded differently to different weather conditions and governed summer PM_(1) pollution.The average ON,OrgN,OS and PAHs concentrations were determined to be 122.8,84.4,45.6 and 3.3 ng/m^(3),respectively.ON was dominated by primary sources(53.8%).OrgN varied similarly to nitrate.OS formation was linked with aqueous-phase reactions,which were insignificant therefore its level was low.PAHs was mainly from traffic,and photochemical oxidation might be its important sink during afternoon.
基金supported by the National Key R&D Program of China(No.2024YFC3714200)Guangxi Key Research and Development Program,China(No.Guike AB24010074)+2 种基金the National Natural Science Foundation of China(Nos.22276099,U24A20515 and 22361162668)the Natural Science Foundation of Jiangsu Province(No.BK20240036)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_1529).
文摘Temperature has a substantial impact on the emission of biogenic volatile organic compounds(BVOCs).Moder-ate warm temperatures,e.g.,30–40°C,could boost plant metabolism,increasing BVOC emissions.Against the backdrop of global warming,plants emit more BVOCs to cope with thermal stress,leading to elevated concen-trations of tropospheric ozone(O_(3))and secondary organic aerosols(SOA).In recent years,a considerable body of research has explored the interaction between tree species and BVOCs under the influence of various environ-mental factors.Although many studies have examined explored the temperature dependence of BVOC emissions in the past,few studies have conducted a comprehensive and in-depth investigation into the impacts of tempera-ture.This review summarizes the relevant studies on BVOCs in the past decade,including the main biosynthetic pathways,emission observation techniques and emission inventories,as well as how temperature affects isoprene and monoterpene emission rates and the formation of O_(3) and SOA.Our work offers a theoretical foundation and guidance for future efforts to advance the comprehension of BVOC emission characteristics and develop strategies to mitigate secondary pollution.
文摘Microplastic contamination has emerged as a threat in transplantation,with evidence of its presence in human tissues and potential to compromise grafts.Transplant recipients,vulnerable due to immunosuppression and surgical exposure,face risk from microplastics via airborne particles,surgical materials,and organ preservation systems.These particles trigger inflammation,oxidative stress,and immune dysregulation—pathways critical in rejection.Microplastics support biofilm formation,potentially facilitating antimicrobial resistance in clinical settings.Despite this risk,transplant-specific research is lacking.We urge action through environmental controls,material substitutions,and procedural modifications,alongside research targeting exposure pathways,biological impact,and mitigation strategies.Transplantation has historically led medical innovation and must do so in confronting this environmental challenge.Leadership from global transplant societies is essential to protect recipients and ensure safe procedures.
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
基金supported by Natural Science Foundation of Zhejiang Province(Nos.LQ23E030002,LZ23B040001)the National Natural Science Foundation of China(Nos.52303226,21971049)L.Zhan acknowledges the research start-up fund from Hangzhou Normal University(4095C50222204002).
文摘Organic photovoltaics(OPVs)have achieved remarkable progress,with laboratory-scale single-junction devices now demonstrating power conversion efficiencies(PCEs)exceeding 20%.However,these efficiencies are highly dependent on the thickness of the photoactive layer,which is typically around 100 nm.This sensitivity poses a challenge for industrial-scale fabrication.Achieving high PCEs in thick-film OPVs is therefore essential.This review systematically examines recent advancements in thick-film OPVs,focusing on the fundamental mechanisms that lead to efficiency loss and strategies to enhance performance.We provide a comprehensive analysis spanning the complete photovoltaic process chain:from initial exciton generation and diffusion dynamics,through dissociation mechanisms,to subsequent charge-carrier transport,balance optimization,and final collection efficiency.Particular emphasis is placed on cutting-edge solutions in molecular engineering and device architecture optimization.By synthesizing these interdisciplinary approaches and investigating the potential contributions in stability,cost,and machine learning aspects,this work establishes comprehensive guidelines for designing high-performance OPVs devices with minimal thickness dependence,ultimately aiming to bridge the gap between laboratory achievements and industrial manufacturing requirements.
基金financial support by the National Key Research and Development Program of China(No.2023YFC2907801)the Hunan Provincial Natural Science Foundation of China(No.2023JJ40760)the Scientific and Technological Project of Yunnan Precious Metals Laboratory,China(No.YPML-2023050276)。
文摘Bentonite is a necessary binder in producing pellets.Its excessive use reduces the iron grade of pellets and increases production costs.Minimizing bentonite dosage is essential for producing high-quality iron ore pellets.Addressing the gap in the application of organically-intercalated modified bentonite in the pelletizing field,this study introduces an innovative modification process for bentonite that employs the synergistic effect of mechanical force and dimethyl sulfoxide to enhance the intercalation of organic compounds within bentonite,thus significantly enhancing its binding performance.The colloid value and swell capacity of modified bentonite(98.5 m L/3g and 55.0 m L/g)were much higher than the original bentonite(90.5 m L/3g and 17.5 m L/g).With the decrease of bentonite dosage from1.5wt%to 1.0wt%,the drop number of green pellets from a height of 0.5 m and the compressive strengths of roasted pellets using the modified bentonite(6.0 times and 2916 N per pellet)were significantly higher than those of the original bentonite(4.0 times and 2739 N per pellet).This study provides a comprehensive analysis of the intercalation modification mechanism of bentonite,offering crucial technical insights for the development of high-performance modified bentonite as iron ore pellet binders.
基金Supported by the National Natural Science Foundation of China,No.82305376the Youth Talent Support Project of the China Acupuncture and Moxibustion Association,No.2024-2026ZGZJXH-QNRC005+2 种基金the 2024 Jiangsu Province Youth Science and Technology Talent Support Project,No.JSTJ-2024-3802025 Jiangsu Provincial Science and Technology Think Tank Program Project,No.JSKX0125035and 2025 College Student Innovation Training Program Project,No.X202510315373。
文摘BACKGROUND Organ transplantation has emerged as a globally prevalent therapeutic modality for end-stage organ failure,yet the post-transplantation trajectory is increasingly complicated by a spectrum of metabolic sequelae,with obesity emerging as a critical clinical challenge.AIM To systematically review the multifactorial mechanisms underlying obesity following organ transplantation and to integrate evidence from pharmacological,behavioral,and molecular perspectives,thereby providing a foundation for targeted interventions.METHODS We conducted a systematic search in PubMed and Web of Science for literature published from 2020 to 15 July 2025.The search strategy incorporated terms including“obesity”,“overweight”and“post organ transplantation”.Only randomized controlled trials,meta-analyses,and systematic reviews were included.Non-empirical publications and irrelevant studies were excluded.Data extraction and quality assessment were performed by two independent reviewers,with disagreements resolved by a third researcher.RESULTS A total of 1457 articles were initially identified,of which 146 met the inclusion criteria.These studies encompassed liver,kidney,heart,and lung transplant recipients.Key findings indicate that immunosuppressive drugs-especially corticosteroids and calcineurin inhibitors-promote hyperphagia,insulin resistance,and dyslipidemia.Post-transplant sedentary behavior and hypercaloric diets further contribute to positive energy balance.At the molecular level,immunosuppressants disrupt adipokine signaling(e.g.,leptin and adiponectin),induce inflammatory and oxidative stress responses,and activate adipogenic pathways leading to lipid accumulation.CONCLUSION Post-transplant obesity arises from a complex interplay of pharmacological,behavioral,and molecular factors.A multidisciplinary approach-incorporating pharmacological modification,nutritional management,physical activity,and molecular-targeted therapies-is essential to mitigate obesity and improve transplant outcomes.Further large-scale and mechanistic studies are warranted to establish evidence-based preventive and treatment strategies.
基金supported by the National Natural Science Foundation of China(No.22506042)the Natural Science Foundation of Henan Province(Nos.252300421710 and 252300421552)the High level Talent Research Launch Fund of Henan University of Technology(No.2024BS061).
文摘Effective control of gas-phase pollutants(volatile organic compounds(VOCs)and CO)is critical to human health and the ecological environment.Catalytic oxidation is one of the most promising technologies for achieving efficient volatile organic compounds and CO emission control.The subnano cluster catalyst can not only provide catalytic sites with multiple metal atoms,but also maintain full utilization efficiency.Almost all metal atoms in highly dispersed clusters can be used for adsorption and conversion of reactants.Recently,various types of sub-nano clusters,including subnano cluster oxides,have been developed and demonstrated excellent performance in low-temperature gas-phase pollutants combustion.In this mini review,we systematically summarize the structure,physicochemical properties,characterization,and applications of sub-nano cluster catalysts in catalytic oxidation of CO,methane,propane,propylene,toluene and its derivatives,formaldehyde and chlorinated volatile organic compounds.Finally,we have analyzed and discussed the problems and challenges faced by sub-nano cluster catalysts in both basic research and practical applications,providing a scientific basis for the design,synthesis,and application of efficient heterogeneous catalysts for CO and VOCs oxidation.
基金supported by the Nanjing Second Hospital talent lifting project(No.RCZD23001)the Jiangsu Province traditional Chinese medicine science and technology development general program(No.MS2023063)+1 种基金Medical Science and Technology Development Foundation,Nanjing Department of Health(No.ZKX20033)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX25_0240).
文摘Enhancing the activity of fragile enzymes is greatly useful for various purposes,including fabrication of enzyme-based immunosensors.Herein,we report a defect-engineering strategy for encapsulating enzymes within covalent organic frameworks(COFs),enabling the resulting immobilized enzymes with excellent catalytic activity and stability to construct high performance immunosensors.In this design,by consciously introducing monoaldehyde ligands into the imine-linked COFs structure,we have precisely customized the structural defects to improve enzyme loading capacity and conformational stability.Defect-engineering interaction modulation between enzymes and COFs drives the enhancement of catalytic performance.Compared to the pristine COFs,the enzyme@defective COFs composites with optimally tuned catalytic performance exhibit a 4.49-fold enhancement in enzymatic activity.Furthermore,it is demonstrated that the stable skeletons of COFs provide exceptional protection for the enzymes against external perturbations.Thereafter,the optimized enzyme@defective COFs are employed to fabricate immunosensor.We have successfully established a detection method for prostate-specific antigen(PSA),achieving a low detection limit of 0.09 ng/mL.More importantly,the developed immunosensor has successfully distinguished the prostate cancer patients from healthy individuals.This work establishes a novel paradigm for enzyme immobilization,ultimately empowering the construction of a PSA immunosensor with high sensitivity,remarkable operational stability,and great clinical application potential.
基金supported by the National Natural Science Foundation of China(Nos.22406081,22276086,22306086)the Natural Science Foundation of Jiangxi Province(No.20232BAB213029),all of which are greatly acknowledged by the authors.
文摘Fenton-like technology based on peroxymonosulfate activation has shown great potential in refractory organics degradation.In this work,single Fe atom catalysts were synthesized through facile ball milling and exhibited very high performance in peroxymonosulfate activation.The Fe single-atom filled an N vacancy on the triazine ring edge of C_(3)N_(4),as confirmed through X-ray absorption fine structure,density functional calculation and elec-tron paramagnetic resonance.The SAFe_(0.4)–C_(3)N_(4)/PMS system could completely remove phenol(20 mg/L)within 10 min and its first-order kinetic constant was 12.3 times that of the Fe_(3)O_(4)/PMS system.Under different ini-tial pH levels and in various anionic environments,SAFe_(0.4)–C_(3)N_(4) still demonstrated excellent catalytic activity,achieving a removal rate of over 90%for phenol within 12 min.In addition,SAFe_(0.4)–C_(3)N_(4) exhibited outstanding selectivity in reaction systems with different pollutants,showing excellent degradation effects on electron-rich pollutants only.Hydroxyl radicals(•OH),singlet oxygen(1O_(2))and high-valent iron oxide(Fe(Ⅳ)=O)were de-tected in the SAFe_(0.4)–C_(3)N_(4)/PMS system through free radical capture experiments.Further experiments on the quenching of active species and a methyl phenyl sulfoxide probe confirmed that 1O_(2) and Fe(Ⅳ)=O played dom-inant roles.Additionally,the change in the current response after adding PMS and phenol in succession proved that a direct electron transfer path between organic matter and the catalyst surface was unlikely to exist in the SAFe_(0.4)–C_(3)N_(4)/PMS/Phenol degradation system.This study provides a new demonstration of the catalytic mech-anism of single-atom catalysts.
基金supported by the National Natural Science Foundation of China(No.51939009)Shenzhen Science and Technology Program(Nos.JCYJ20241202125905008 and GXWD20201231165807007-20200810165349001).
文摘A trace analytical method based on solid-phase extraction gas chromatography-tandem mass spectrometry(SPE–GC–MS/MS)was developed for the rapid detection of 256 semi-volatile organic compounds(SVOCs),including 25 polycyclic aromatic hydrocarbons(PAHs),70 polychlorinated biphenyls(PCBs),123 pesticides,20 phthalate esters(PAEs),4 organophosphate esters(OPEs),9 synthetic musks(SMs),and 5 UV filters(UVs)in water.No-tably,this method provided a decent linearity of calibration standards(R^(2)>0.999),excellent method limits of quantification(MLOQs)(0.12–11.41 ng/L),satisfactory matrix spiking recovery rates(60.4%–126%),and high precision(intra-day relative standard deviations(RSDs):1.0%–10.0%,inter-day RSDs:3.0%–15.0%,and inter-week RSDs:3.4%–15.7%),making it suitable for trace-level studies.Statistical analysis revealed that SVOCs with higher volatility exhibited enhanced recovery rates.Validation of the methodology involved analyzing SVOCs in real spring water and river water samples.Twenty-seven SVOCs were detected in spring water and 58 in river water,with an average concentration of 631.73 and 16,095 ng/L,respectively.Among the detected SVOCs,PAEs constituted the predominant proportion.This study underscored the presence of SVOCs contamination specifi-cally within the spring water,although SVOCs concentrations in river water were significantly greater than those found in spring water.In summary,this sensitive method based on SPE–GC–MS/MS was successfully developed and validated for the rapid analysis of a diverse array of 256 SVOCs at trace levels in water,including not only the traditional highly valued PAHs,PCBs,pesticides,and PAEs,but also the emerging OPEs,UVs,and SMs.
基金partially supported by grants PID2020-115096RB-I00 and PID2023-148273NB-I00 from Ministerio de Ciencia y Universidad (MICIU/AEI)(to EMS)。
文摘GEMIN5 is a predominantly cytoplasmic multifunctional protein, known to be involved in recognizing snRNAs through its WD40 repeats domain placed at the N-terminus. A dimerization domain in the middle region acts as a hub for protein–protein interaction, while a non-canonical RNA-binding site is placed towards the C-terminus. The singular organization of structural domains present in GEMIN5 enables this protein to perform multiple functions through its ability to interact with distinct partners, both RNAs and proteins. This protein exerts a different role in translation regulation depending on its physiological state, such that while GEMIN5 down-regulates global RNA translation, the C-terminal half of the protein promotes translation of its mRNA. Additionally, GEMIN5 is responsible for the preferential partitioning of mRNAs into polysomes. Besides selective translation, GEMIN5 forms part of distinct ribonucleoprotein complexes, reflecting the dynamic organization of macromolecular complexes in response to internal and external signals. In accordance with its contribution to fundamental cellular processes, recent reports described clinical loss of function mutants suggesting that GEMIN5 deficiency is detrimental to cell growth and survival. Remarkably, patients carrying GEMIN5 biallelic variants suffer from neurodevelopmental delay, hypotonia, and cerebellar ataxia. Molecular analyses of individual variants, which are defective in protein dimerization, display decreased levels of ribosome association, reinforcing the involvement of the protein in translation regulation. Importantly, the number of clinical variants and the phenotypic spectrum associated with GEMIN5 disorders is increasing as the knowledge of the protein functions and the pathways linked to its activity augments. Here we discuss relevant advances concerning the functional and structural features of GEMIN5 and its separate domains in RNA-binding, protein interactome, and translation regulation, and how these data can help to understand the involvement of protein malfunction in clinical variants found in patients developing neurodevelopmental disorders.
文摘Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.
基金financially supported by the National Natural Science Foundation of China(No.22508360)Zhejiang Provincial Natural Science Foundation of China(No.QN26B060028)+1 种基金the National Key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210900)Innovative Team Project of Guang-dong Ordinary University(No.2019KCXTD002).
文摘Constructing catalysts featuring an ordered structure,stable performance,and uniformly dispersed catalytic sites is vital for the epoxidation of small-molecular olefins.Here,we design catalysts by tracing the oxidationprocess origin and synthesize a series of highly dispersed metal porphyrin-based covalent organic frameworks(COFs)materials.The aim is to efficiently oxidize the C-H bonds of cumene by air to in-situ generate organic peroxides at a safe concentration,and integrate the multi-step oxidation method of cumene in industry into a one-step method for olefins’epoxidation.The carbonyl-ruthenium COF(Ru-COF-1)exhibits excellent performance,with 98% epoxide selectivity,1221.77 h^(-1) productivity,and over 95% selectivity after 9 cycles for 1-hexene.Analysis of structure-properties-catalytic relationships of Ru-COF-1 shows that,compared with Ru-porphyrins and metal-free COFs,the enhanced reaction performance mainly results from Ru metal introduction,which promotes benzylic proton transfer in cumene.Besides,Ru-COF-1’s porous,ordered structure aids oxygen enrichment,forming active peroxy radicals with the cumene carboncentered radicals formed on the catalyst surface.Ru-H sites then accelerate active oxygen transfer from peroxy radicals,enabling olefin tandem epoxidation.Density functional theory(DFT)calculations verify the reaction mechanism,and this work offers a reference for the design of catalysts for the green,safe,and efficient oxidation of olefins.
基金supported by the National Natural Science Foundation of China(Nos.11375082,22271189,12405385,92356301,and 21522105)the Hunan Provincial Natural Science Foundation of China(No.2021JJ30565)+5 种基金the Science and Technology Commission of Shanghai Municipality(Nos.21XD1402300,21JC1401700,and 21DZ2260400)the supports by the Double First-Class Initiative Fund of ShanghaiTech University(No.SYLDX0052022)the Analytical Instrumentation Center(No.SPST-AIC10112914)for adsorption measurementthe staff at BL17B1 beamline of the National Facility for Protein Science in Shanghai(NFPS),Shanghai Advanced Research Institute,CAS,for providing beamtime for single-crystal X-ray diffraction data collectionthe project CICECO-Aveiro Institute of Materials,Grants(Nos.UIDB/50011/2020,UIDP/50011/2020,and LA/P/0006/2020)financed by national funds through the FCT/MEC(PIDDAC).
文摘A series of dual-extended-polyhedral metal-organic frameworks(MOFs)was constructed based on the 14-coordinated Cu_(24)-MOP-1(MOP=metal-organic polyhedron)supermolecular building blocks(SBBs)with enhanced stability and tunable functionality for high water uptake efficiency and capacity.Exceptional water stability was demonstrated by the retention of chemical integrity and crystallinity of USC-CP-5(where USC-CP stands for University of South China coordination polymer)after exposure to boiling water for 24 h.Functionalization with-Cl,-OCH_(3),-OH,and-NH_(2)groups of USC-CP-5 resulted in water uptake capacities of 450,460,490,and 590 cm^(3)·g^(-1) at relative pressure(P/P_(0))=0.9,respectively.This performance is ascribed to both the increased hydrophilicity of the ligands and stronger hydrogen bonding.Intriguingly,high-temperature activated USC-5-NH_(2)exhibits a significant water uptake of 38.5 wt.%at P/P_(0)=0.3 and releases 0.44 L·kg^(-1) water between 25 and 65℃.This water release process is reversible for at least 100 cycles with minimal weight loss of only 1.6 wt.%.Consequently,USC-5-NH_(2)holds considerable potential for harvesting and releasing atmospheric water in arid desert regions,powered by solar energy.
基金Financial support from the National Natural Science Foundation of China(22375024,21975031,21734009,51933001,22109080,and 52173174)the Natural Science Foundation of Shandong Province(No.ZR2022YQ45)+2 种基金the Taishan Scholars Program(Nos.tstp20221121 and tsqnz20221134)The Beijing Natural Science Foundation(No.2244073)supported by State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University)(RZ2200002821)is acknowledged.
文摘A nonfused ring electron acceptor(NFREA),designated as TT-Ph-C6,has been synthesized with the aim of enhancing the power conversion efficiency(PCE)of organic solar cells(OSCs).By integrating asymmetric phenylalkylamino side groups,TT-Ph-C6 demonstrates excellent solubility and its crystal structure exhibits compact packing structures with a three-dimensional molecular stacking network.These structural attributes markedly promote exciton diffusion and charge carrier mobility,particularly advantageous for the fabrication of thick-film devices.TT-Ph-C6-based devices have attained a PCE of 18.01%at a film thickness of 100 nm,and even at a film thickness of 300 nm,the PCE remains at 14.64%,surpassing that of devices based on 2BTh-2F.These remarkable properties position TT-Ph-C6 as a highly promising NFREA material for boosting the efficiency of OSCs.
基金supported by the National Key Research and Development Program of China(No.2023YFC3905400)the National Natural Science Foundation of China(No.22176010).
文摘The Ru-based catalysts with different preparation methods or supports were achieved and applied in efficientlycatalytic elimination of 1,2-dichloroethane(1,2-DCE).It wasfirstly found that the redox ability and chlorine re-sistance of the catalyst could be improved by regulating the interaction between Ru and supports.Compared withother supports and conventionally impregnated methods,the Ru@ZSM-5 catalyst synthesized by the in-situ en-capsulation strategy exhibited an excellent low-temperature catalytic performance(T50=262°C,T90=327℃),superior stability in long-term test as well as ideal target products.The acidity,specific surface area,and in-teraction with precious metals of the supports have significant influences on the catalytic activity,and the Ruclusters inside the pore structures are more closely bound to the framework Al species,which promotes theoxidation behavior.The encapsulation strategy also significantly improves the Ru dispersion thereby facilitatesoxygen activation as well as Cl-containing volatile organic compounds(CVOCs)deep oxidation,and preserveslarge amounts of Brønsted acid sites to optimize the hydrolysis mechanism for purification of CVOCs.Subse-quently,the synergistic effect between metal redox and acidity is greatly optimized,thus extremely promotingthe catalytic efficiency of 1,2-DCE oxidation.
基金supported by the National Natural Science Foundation of China(Nos.41905108 and 42130704).
文摘Carbonyl compounds play a pivotal role in the formation of secondary pollutants such as O_(3) and SOA,signifi-cantly impacting air quality and human health.This study extended the observation period compared to previous research,providing a long-term perspective on carbonyl compound variations and their environmental implica-tions.Atmospheric observations were conducted at Beijing(BJ)and Xianghe(XH)during the summer and winter months of 2018,2019,and 2023 to study the sources and impacts of carbonyl compounds in typical urban areas and peri‑urban areas.Notably,concentrations in the summer of 2023 increased compared to 2018 and 2019.The predominant carbonyl compounds—formaldehyde,acetaldehyde,and acetone—accounted for over 60%of the total.The mean values of OFP in BJ ranged from 18.55 to 58.61μg/m3,lower than those in XH(29.82 to 65.48μg/m3),with formaldehyde and acetaldehyde contributing over 80%of the total.SOAP exhibited a similar pattern,with values in XH(69.21 to 508.55μg/m3)significantly exceeding those in BJ(34.47 to 159.78μg/m3).The PMF model highlighted vehicle exhaust,secondary pollution,and biomass combustion as major sources of carbonyl compounds,emphasizing differences in source contributions between the two regions.This study’s com-parative analysis over different years and locations provides new insights into the dynamic changes in carbonyl compounds and their environmental importance.These results not only reinforce the importance of carbonyl compounds regulation but also offer a valuable reference for evaluating and refining emission control strategies during this period.