Nifedipine(NF),a widely prescribed antihypertensive agent,necessitates long-term administration to maintain therapeutic efficacy.Although osmotic pump formulations,such as Bayer’s Adalat^(®),are well-established...Nifedipine(NF),a widely prescribed antihypertensive agent,necessitates long-term administration to maintain therapeutic efficacy.Although osmotic pump formulations,such as Bayer’s Adalat^(®),are well-established for achieving zero-order drug release,their complex manufacturing requirements significantly elevate production costs.In this study,we employed mesoporous silica as a drug carrier for nifedipine and incorporated it with an organic polymer matrix to construct an organic-inorganic hybrid nanocomposite(OIN).This nanostructured system demonstrated robust sustained-release properties in both in vitro and in vivo evaluations,with the in vitro release profile exhibiting classical first-order kinetics.To further optimize the release behavior,we combined OIN with conventional tablet-forming techniques to create an oral nanocomposite system(ONS)capable of achieving near-zero-order release.Remarkably,the cumulative release profiles of ONS closely mirrored those of the commercially available Adalat^(®)osmotic formulation across multiple time points.Moreover,we conducted a theoretical analysis of the release mechanisms underlying both OIN and ONS systems,offering novel mechanistic insights that could inform the future design of advanced sustained-release drug delivery platforms.展开更多
The organic-inorganic transformation and interaction act as the critical role in the occurrence of nanopores within the organic-rich shales during thermal maturation.Hydrous pyrolysis experiments were conducted on the...The organic-inorganic transformation and interaction act as the critical role in the occurrence of nanopores within the organic-rich shales during thermal maturation.Hydrous pyrolysis experiments were conducted on the organic-rich mudrock collected from the Upper Cretaceous Nenjiang Formation of the Songliao Basin,China in a closed system.The pore types and pore network,and organic and inorganic compositions of pyrolyzed shales were detected from the early to over mature stages(%Ro=0.61-4.01).The experimental results indicate that geochemical transformation of organic matters and minerals and the interaction control the formation and evolution of nanoporosity.In oil window mineral matrix pores are infilled by the generated oil,K-feldspar dissolution by organic acids promotes clay illitization to form illite,and the catalytic effects of clays(e.g.illite)in the complex of organic matter and clays may promote the in-situ retained oil cracking to generate natural gas,resulting in the early occurrence of organic-matter pores in the complex within oil window.Due to significant primary cracking of solid kerogen to generate extractable liquid oil,pore volume for storing fluids presents a persistent increase and approaches the maximum at the end of oil window.In gas window intensive oil cracking facilitates the hydrocarbon migrating out of the source home and pyrobitumen formation,resulting in the significant occurrence of modified mineral matrix pores and organic-matter pores.Pore volume for hosting hydrocarbons presents a slight decrease at%Ro=1.36-2.47 due to pyrobitumen formation by oil secondary cracking.The organic-inorganic interaction favors clay illitization,quartz dissolution,and pyrite and carbonate decomposition,which facilitate the occurrence of nanoporosity.Pyrobitumen within the complex with illite and organic matters are much more porous than that hosted in modified mineral matrix pores and microfractures.The catalytic effects of clays are supposed to be responsible for this.This study improves our understanding of the formation and evolution pathways of nanoporosity and the underlying controls in organic-rich shales during thermal maturation,and hence should be helpful in evaluating the sweet spots for shale-oil and shale-gas plays in a sedimentary basin.展开更多
Flexible wearable electronic devices based on hydrogels have immense potential in a wide range of applications.However,many existing strain sensors suffer from significant limitations including poor mechanical propert...Flexible wearable electronic devices based on hydrogels have immense potential in a wide range of applications.However,many existing strain sensors suffer from significant limitations including poor mechanical properties,low adhesion,and insufficient conductivity.To address these challenges,this study successfully developed an organic-inorganic double-network conductive hydrogel using acrylic-modified bentonite (AABT) as a key component.The incorporation of AABT significantly enhanced the mechanical properties of the ATHG@LiCl hydrogel,achieving an impressive stretchability of 4000% and tensile strength of 250 kPa.Moreover,it improved the electrical conductivity of the hydrogel to a maximum of 1.53 mS/cm.The catechol structure of tannic acid (TA) further augmented the adhesive properties of the ATHG@LiCl hydrogel toward various substrates such as copper,iron,glass,plastic,wood,and pigskin.The addition of lithium chloride (LiCl) and dimethyl sulfoxide(DMSO) endowed the hydrogel with exceptional freezing resistance and flexibility,even at low temperatures of-20℃.Remarkably,the hydrogel maintained a conductivity of 0.53 mS/cm under these conditions,surpassing the performance of many other reported hydrogels.Furthermore,the ATHG@LiCl hydrogel demonstrated outstanding characteristics,such as high sensitivity (gauge factor GF=4.50),excellent transparency (90%),and reliable strain-sensing capabilities,indicating that the ATHG@LiCl hydrogel is a highly promising candidate for flexible wearable soft materials,offering significant advancements in both functionality and performance.展开更多
Solar-driven(or light-driven)production of hydrogen peroxide(H_(2)O_(2))from water(H_(2)O)and molecular oxygen(O_(2))has recently received increasing attention as a green and sustainable alternative to conventional me...Solar-driven(or light-driven)production of hydrogen peroxide(H_(2)O_(2))from water(H_(2)O)and molecular oxygen(O_(2))has recently received increasing attention as a green and sustainable alternative to conventional methods.However,the field of photocatalytic H_(2)O_(2)production is still in its infancy,primarily because of limited H_(2)O_(2)production efficiency.Over the past few years,a wide range of inorganic,organic,and organic-inorganic hybrid photocatalysts have been developed via diverse synthetic and modification strategies to increase the H_(2)O_(2)yield.Among them,organic-inorganic hybrid photocatalysts have shown higher H_(2)O_(2)production performance than single-component systems;at the same time,the advancements and challenges of these hybrid systems have not been comprehensively reviewed.Therefore,this review summarizes the advantages/limitations,recent progress,and potential challenges of organic-inorganic hybrid photocatalysts for H_(2)O_(2)production.First,we elucidate the superiority of the photocatalytic H_(2)O_(2)production over the conventional anthraquinone oxidation process.Then,we summarize the advantages and limitations of inorganic,organic,and organic-inorganic hybrid photocatalysts and discuss in detail the design,synthetic strategies,and photochemical properties of organic-inorganic hybrid photocatalysts.Finally,this review outlines the challenges and outlook for future research in this emerging area.展开更多
The exploitation of organic-inorganic hybrid perovskites(OIHPs) as active layer materials for typical sandwich-structured resistive memories has attracted widespread interest due to the property of low power consumpti...The exploitation of organic-inorganic hybrid perovskites(OIHPs) as active layer materials for typical sandwich-structured resistive memories has attracted widespread interest due to the property of low power consumption and fast switching. However, the inherent thermal instability of perovskites limits the application of OIHPs-based resistive memories under extreme conditions, while the infiuence of thermal effects on their resistance change characteristics remains unclear. Herein, a novel 2D <100>-oriented high-temperature resistant OIHP [(BIZ-H)_(2)(PbBr_(4))]n(BIZ = benzimidazole) is prepared as an active layer material to fabricate FTO/[(BIZ-H)_(2)(PbBr_(4))]n/Ag resistive memory with excellent thermal reproducibility and stability up to 120℃. The increase in temperature leads to a decrease in the PbBr_(6) octahedral distortion in the crystal structure, an increase in hydrogen bonding between the(BIZ-H)+cation and the(PbBr_(4))_(n)^(2n-)layer, and a shortening of the spacing of the inorganic layers, which is found to result in the creation and predominance of thermally activated traps with increasing temperature. This work provides a new direction for the next generation of OIHPs-based resistive memories with high-temperature tolerance.展开更多
The development of lithium-metal batteries(LMBs)is seriously restricted by the out-of-control dendrites growth and infinite volume expansion.Herein,a pervasive organic-inorganic layer construction strategy is reported...The development of lithium-metal batteries(LMBs)is seriously restricted by the out-of-control dendrites growth and infinite volume expansion.Herein,a pervasive organic-inorganic layer construction strategy is reported for the composite lithium metal anode with congener-derived organic-inorganic solid electrolyte interphase(SEI).In this strategy,the organic-inorganic Ag@polydopamine(Ag@PDA)layer is coated on the arbitrary substrates by a simple two-step method.The thin and stable congener-derived SEI is insitu formed with fewer inorganic components and more organic components during charging/discharging.The polydopamine with sufficient adhesion groups and lithiophilic Ag layer realize near-zero nucleation overpotential during lithium deposition.The low interface resistance and stable lithium deposition are achieved.Moreover,the practical areal and volumetric capacities of the composite anode with three-dimensional copper(3DCu)as the substrate are 10 mAh/cm^(2)and 1538 mAh/cm^3(vs.the mass of anode).The symmetrical cell shows very low polarization voltage(10 mV)and more than 2500 h cycles life at 1 mA/cm^(2)(1 mAh/cm^(2)).The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based full cells show improved capacity retention(82%)after 100 cycles at 0.5 C.The modified lithiophilic anode with congener-derived interphase provides a promising strategy to realize the next-generation dendrite-free LMBs.展开更多
Finding suitable strategies to effectively enhance the optical properties of materials are the goal being pursued by researchers.Herein,cation-anion synergetic interactions strategy was proposed to develop two novel o...Finding suitable strategies to effectively enhance the optical properties of materials are the goal being pursued by researchers.Herein,cation-anion synergetic interactions strategy was proposed to develop two novel organic-inorganic hybrid antimony-based optical materials,(C_(3)H_(5)N_(2))Sb F_(2)SO_(4)(I)and(C_(5)H_(6)N)Sb F_(2)SO_(4)(Ⅱ),which were obtained by introducing Sb^(3+)cation containing stereochemically active lone-pair(SCALP)and organicπ-conjugated cations into sulphate system.The synergistic interactions of the organicπ-conjugated cations,the inorganic[SbO_(2)F_(2)]^(3-)seesaw anions and the[SO_(4)]^(2-)distorted tetrahedra anions make their ultraviolet(UV)absorption edges approach 297 and 283 nm,respectively,and raise their birefringence up to 0.193@546 nm and 0.179@546 nm,respectively.Interestingly,although the two compounds have the same stoichiometric ratio and similar one-dimensional(1D)chain structure,they show opposite macroscopic symmetry,where the NCS compound(Ⅱ)exhibits a large secondharmonic generation(SHG)response(1.6 times that of KH_(2)PO_(4)).The two reported compounds are found to be promising UV optical materials in the experimental tests.展开更多
We report a mechanistic study of excitonic photoluminescence in predesigned hybrid organic-inorganic perovskite(HOIP)systems,i.e.,(DMAEA)Pb_(2)I_(6),(DMAPA)PbI_(4),(DEAEA)Pb_(2)I_(6),and(DEAPA)_(4)Pb_(5)I_(18),featuri...We report a mechanistic study of excitonic photoluminescence in predesigned hybrid organic-inorganic perovskite(HOIP)systems,i.e.,(DMAEA)Pb_(2)I_(6),(DMAPA)PbI_(4),(DEAEA)Pb_(2)I_(6),and(DEAPA)_(4)Pb_(5)I_(18),featuring targeted regulation of organic cations.Starting from the prototype DMAEA(i.e.,2-N,N-dimethylamino-l-ethylamine)for(DMAEA)Pb_(2)I_(6),the other three HOIPs differ only in the extensions with CH_(2)group(s)at the“head”or/and“tail”of DMAEA that is an“alkylated ammonia”.Their crystal structures are constructed and structural distortions are evaluated.The steady-state/transient absorption and emission spectroscopic characterizations,combined with the band-structure calculations,are conducted.The two different photoluminescence(PL)mechanisms are identified,i.e.,PL emissions dominated by free excitons for(DMAPA)PbI_(4)and by self-trapped excitons for(DMAEA)Pb_(2)I_(6),(DEAEA)Pb_(2)I_(6),and(DEAPA)_(4)Pb_(5)I_(18).The self-trapped excitonic effect involved in the latter three HOIPs is quantitatively analyzed.This work would be of guiding value for the design of HOIP systems based on organic-cation engineering,beneficial for the pertinent performance optimization in light-emitting applications.展开更多
Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE...Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.展开更多
Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed ...Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.展开更多
A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size an...A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.展开更多
The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the opti...The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the optimal concentrations for better nutrient release was proposed. The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment. Organic-inorganic compound film-coated urea showed good characteristics of nutrient release, which could be well simulated by Logistic curve. The two parameters in this curve, a and r, can be used to present nutrient release of film-coated urea, and followed the order of B 〉 C 〉 A and C 〈 B 〈 A, respectively, indicating that the release was stronger with the increasing concentration of natural macromolecular compound in the membrane, which implied better controllability of nutrient release. The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.展开更多
Two new organic-inorganic compounds [(CH2)5NH2]3[PMo12O40]·3[(CH2)NH] 1 and [(CH2)5NH2]6[P2Mo18O62]·5H2O 2 have been synthesized using conventional and hydrothermal methods, respectively, and character...Two new organic-inorganic compounds [(CH2)5NH2]3[PMo12O40]·3[(CH2)NH] 1 and [(CH2)5NH2]6[P2Mo18O62]·5H2O 2 have been synthesized using conventional and hydrothermal methods, respectively, and characterized by elemental analyses, IR, TG and single-crystal X-ray diffraction. X-ray analyses show that in these compounds heteropolymolybdates [PMo12O40]^3- and [P2Mo18O62]^6- are reserved their Keggin or Dawson structures and linked to piperidine through electrostatic and hydrogen-bonding interactions.展开更多
Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and ...Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.展开更多
Organic dyes based hybrid organic-inorganic luminescent nanomaterials with high quantum efficiency, good physical or chemical stability, and favorable biocompatibility, have attracted growing attention recently becaus...Organic dyes based hybrid organic-inorganic luminescent nanomaterials with high quantum efficiency, good physical or chemical stability, and favorable biocompatibility, have attracted growing attention recently because of their important applications in the areas of biomedical imaging, chemical sensors, and light-emitting diodes(LEDs). Nevertheless, conventional fluorescence molecules suffer from aggregation-caused quenching(ACQ) when they are doped into inorganic nanomaterials. Aggregation-induced emission(AIE) is an abnormal and intriguing fluorescent phenomenon that has aroused increasing interest for various applications especially in biomedical fields. Compared with conventional organic dyes, the AIE-active molecules will emit more intense fluorescence in their aggregates or solid states. It provides an elegant route to overcome the drawbacks of conventional organic molecules. Over the past few decades, the fabrication and surface modification of various organic-inorganic luminescent composites doped with AIE-active molecules have been reported. Therefore, it is highly desirable to summarize these advances. In this review, recent advances and progress in constructing various AIEgens-doped organic-inorganic hybrid nanocomposites and their subsequent surface modification were summarized. We hope this review could further promote the research of AIE-active functional materials.展开更多
The experiment was conducted in the abandoned land of Liangjia Village,Huayin City,Shaanxi Province from April to September 2019.The experimental crop was spring maize.A total of six treatments were set up in a random...The experiment was conducted in the abandoned land of Liangjia Village,Huayin City,Shaanxi Province from April to September 2019.The experimental crop was spring maize.A total of six treatments were set up in a randomized block design.The moisture content of the top 0-60 cm soil was determined regularly,and the yield and quality indices of maize at maturity were checked.The results show that:(i)combined organic-inorganic fertilization increased the yield of spring maize by 3%-8%.(ii)Compared with CK,fertilization treatments significantly improved the water use efficiency of spring maize,with an increase of 59.2%.The average water use efficiency of three combined organic-inorganic fertilization treatments was 27.81 kg/(ha·mm).Compared with CON,combined application of organic and inorganic fertilizers significantly improved the water use efficiency of spring maize,with an increase of 12.5%.(iii)The combined application of organic and inorganic fertilizers increased the moisture,total starch,crude protein and crude fat contents,and reduced crude fiber content of maize kernels.However,with the increase of the proportion of organic fertilizer,the crude protein content of maize kernels decreased.(iv)Yield of spring maize showed a significant parabolic relationship with soil water consumption.In summary,70%inorganic fertilizer+30%organic fertilizer is a scientific and reasonable way of fertilization.展开更多
Continental epithermal ore deposits are commonly associated with sedimentary organic matter,oils or solid bitumen.These organics embedded in mineral deposits can convey valuable information of the ore genesis.However,...Continental epithermal ore deposits are commonly associated with sedimentary organic matter,oils or solid bitumen.These organics embedded in mineral deposits can convey valuable information of the ore genesis.However,the extent to which the formation of ore minerals was recorded by organic compounds remains largely unknown,as also is how metal-rich ores interfere with the molecular proxies in the temperature regime envisaged for hydrothermal activity.The molecular compositional changes of various polycyclic aromatic steranes and polycyclic aromatic hydrocarbons and compounds derived from the Jinding Pb/Zn deposit,SW China provide new data.Aliphatic regular steranes are present as traces.The transformation from polycyclic aromatic steranes to unsubstituted polycyclic aromatic hydrocarbons is observed to show an increased trend with increasing hydrothermal alteration levels;this is consistent with the transformation from unsubstituted polycyclic aromatic hydrocarbons to heterocyclic compounds.Dehydrocyclization(aromatization)of polycyclic biological compounds and hydrodecyclization(dearomatization)of polycyclic aromatic compounds are two important reaction pathways in hydrothermal systems with moderate temperature.This detailed investigation of organicinorganic interactions of two groups of polycyclic compounds with metal-rich ores provides insights into the questions on how and to what extent the formation of Pb/Zn deposits can be recorded by organics.This work will improve our understanding of carbon reduction,oxidation or condensation in the deep Earth and the carbon exchange between the Earth's crust and mantle,and may shed light on the processes for ultra-deep hydrocarbon exploration.展开更多
Chiral organic-inorganic metal halide semiconductors(OIMHSs)have recently attracted numerous interests due to their unique chirality,structural tunability,and extensive physical properties.However,most reported chiral...Chiral organic-inorganic metal halide semiconductors(OIMHSs)have recently attracted numerous interests due to their unique chirality,structural tunability,and extensive physical properties.However,most reported chiral OIMHSs contain toxic lead,which will be a potential obstacle to their further applications.Herein,we successfully synthesized a novel chiral lead-free tin(IV)-based OIMHS[(R)-3-hydroxyquinuclidinium]_(2)SnCl_(6)([R-HQ]_(2)SnCl_(6)).It exhibits a wide band gap(Eg)of about 4.11 eV.Moreover,[R-HQ]_(2)SnCl6 undergoes a phase transition around 330 K(Tc)and shows distinct dielectric switching characteristics with good repeatability.This work enriches the chiral lead-free OIMHS family and stimulates further exploration of chiral lead-free OIMHS switching materials.展开更多
Hybrid organic-inorganic perovskite materials have attracted significant atte ntion of most re searchers in recently years,which is ascribed to the superior photoelectric properties,such as the suitable band gaps for ...Hybrid organic-inorganic perovskite materials have attracted significant atte ntion of most re searchers in recently years,which is ascribed to the superior photoelectric properties,such as the suitable band gaps for harvesting sunlight,and exhibit high optical adsorption,high charge-carrier lifetimes and long diffusion lengths.The photodetectors,light-emitting diodes,solar cells and photocatalysts represent the remarkable applications for the hybrid organic-inorganic perovskite materials.Herein,we review the recent progress of hybrid organic-inorganic perovskite-based photodetectors,light-emitting diodes,solar cells and photocatalysts.The challenges and outlook for the hybrid organic-inorganic perovskitebased photodetectors,light-emitting diodes,solar cells and photocatalysts are considered.展开更多
Reactions of piperidine derivatives 4-(aminomethyl)piperidine(4-AMPD) and 1-methylpiperidin-4-amine(1-MPDA) with semi-conductive metal iodine SbI3 and PbI2 in concentrated HI aqueous solution afforded two one-dimensio...Reactions of piperidine derivatives 4-(aminomethyl)piperidine(4-AMPD) and 1-methylpiperidin-4-amine(1-MPDA) with semi-conductive metal iodine SbI3 and PbI2 in concentrated HI aqueous solution afforded two one-dimensional(1 D) chain compounds [(4-AMPD)SbI5]n(1), [(1-MPDA)SbI5]n(2) and a two-dimensional(2 D) single layered organicinorganic hybrid material [(1-MPDA)PbI4]n(3), which were confirmed by X-ray single-crystal diffraction, infrared(IR) spectroscopy and powder X-ray diffraction(PXRD). Simultaneously, compounds 1~3 exhibit strong emission peaks at 600 nm for 1 and 2 and 570 nm for 3, which were originated from their inorganic moieties.展开更多
基金The National Natural Science Foundation of China(Grant Nos.U20A20412,81821004,U22A20384,82225044,52273136)the National Key R&D Program of China(Grant Nos.2022YFC3501900,2023YFC2605004)+1 种基金the Beijing Natural Science Foundation(Grant Nos.L222127,L212013)the AI+Health Collaborative Innovation Cultivation Project(Grant No.Z211100003521002).
文摘Nifedipine(NF),a widely prescribed antihypertensive agent,necessitates long-term administration to maintain therapeutic efficacy.Although osmotic pump formulations,such as Bayer’s Adalat^(®),are well-established for achieving zero-order drug release,their complex manufacturing requirements significantly elevate production costs.In this study,we employed mesoporous silica as a drug carrier for nifedipine and incorporated it with an organic polymer matrix to construct an organic-inorganic hybrid nanocomposite(OIN).This nanostructured system demonstrated robust sustained-release properties in both in vitro and in vivo evaluations,with the in vitro release profile exhibiting classical first-order kinetics.To further optimize the release behavior,we combined OIN with conventional tablet-forming techniques to create an oral nanocomposite system(ONS)capable of achieving near-zero-order release.Remarkably,the cumulative release profiles of ONS closely mirrored those of the commercially available Adalat^(®)osmotic formulation across multiple time points.Moreover,we conducted a theoretical analysis of the release mechanisms underlying both OIN and ONS systems,offering novel mechanistic insights that could inform the future design of advanced sustained-release drug delivery platforms.
基金National Nature Science Foundation of China(No.42030803,42073066),and the valuable comments and suggestions by three anonymous referees that greatly improved this paper.
文摘The organic-inorganic transformation and interaction act as the critical role in the occurrence of nanopores within the organic-rich shales during thermal maturation.Hydrous pyrolysis experiments were conducted on the organic-rich mudrock collected from the Upper Cretaceous Nenjiang Formation of the Songliao Basin,China in a closed system.The pore types and pore network,and organic and inorganic compositions of pyrolyzed shales were detected from the early to over mature stages(%Ro=0.61-4.01).The experimental results indicate that geochemical transformation of organic matters and minerals and the interaction control the formation and evolution of nanoporosity.In oil window mineral matrix pores are infilled by the generated oil,K-feldspar dissolution by organic acids promotes clay illitization to form illite,and the catalytic effects of clays(e.g.illite)in the complex of organic matter and clays may promote the in-situ retained oil cracking to generate natural gas,resulting in the early occurrence of organic-matter pores in the complex within oil window.Due to significant primary cracking of solid kerogen to generate extractable liquid oil,pore volume for storing fluids presents a persistent increase and approaches the maximum at the end of oil window.In gas window intensive oil cracking facilitates the hydrocarbon migrating out of the source home and pyrobitumen formation,resulting in the significant occurrence of modified mineral matrix pores and organic-matter pores.Pore volume for hosting hydrocarbons presents a slight decrease at%Ro=1.36-2.47 due to pyrobitumen formation by oil secondary cracking.The organic-inorganic interaction favors clay illitization,quartz dissolution,and pyrite and carbonate decomposition,which facilitate the occurrence of nanoporosity.Pyrobitumen within the complex with illite and organic matters are much more porous than that hosted in modified mineral matrix pores and microfractures.The catalytic effects of clays are supposed to be responsible for this.This study improves our understanding of the formation and evolution pathways of nanoporosity and the underlying controls in organic-rich shales during thermal maturation,and hence should be helpful in evaluating the sweet spots for shale-oil and shale-gas plays in a sedimentary basin.
基金supported by the National Natural Science Foundation of China(No,22271074)Natural Science Foundation of Hebei Province(Nos.B2023208042,B2022208032,B2021208066,E2024208084 , E2024208088)+2 种基金Science Research Project of Hebei Education Department(No.JZX2024013)Special Fund for Local Scientific and Technological Development under the Guidance of the Central Government(No.236Z3704G)Hebei Province High Level Talent Funding(No.A202001010).
文摘Flexible wearable electronic devices based on hydrogels have immense potential in a wide range of applications.However,many existing strain sensors suffer from significant limitations including poor mechanical properties,low adhesion,and insufficient conductivity.To address these challenges,this study successfully developed an organic-inorganic double-network conductive hydrogel using acrylic-modified bentonite (AABT) as a key component.The incorporation of AABT significantly enhanced the mechanical properties of the ATHG@LiCl hydrogel,achieving an impressive stretchability of 4000% and tensile strength of 250 kPa.Moreover,it improved the electrical conductivity of the hydrogel to a maximum of 1.53 mS/cm.The catechol structure of tannic acid (TA) further augmented the adhesive properties of the ATHG@LiCl hydrogel toward various substrates such as copper,iron,glass,plastic,wood,and pigskin.The addition of lithium chloride (LiCl) and dimethyl sulfoxide(DMSO) endowed the hydrogel with exceptional freezing resistance and flexibility,even at low temperatures of-20℃.Remarkably,the hydrogel maintained a conductivity of 0.53 mS/cm under these conditions,surpassing the performance of many other reported hydrogels.Furthermore,the ATHG@LiCl hydrogel demonstrated outstanding characteristics,such as high sensitivity (gauge factor GF=4.50),excellent transparency (90%),and reliable strain-sensing capabilities,indicating that the ATHG@LiCl hydrogel is a highly promising candidate for flexible wearable soft materials,offering significant advancements in both functionality and performance.
基金supported by National Natural Science Foundation of China (Nos. 52170030 and 52200049)State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology) (No. 2024TS28)+1 种基金Fundamental Research Funds for the Central UniversitiesYoung Scientist Studio of Harbin Institute of Technology
文摘Solar-driven(or light-driven)production of hydrogen peroxide(H_(2)O_(2))from water(H_(2)O)and molecular oxygen(O_(2))has recently received increasing attention as a green and sustainable alternative to conventional methods.However,the field of photocatalytic H_(2)O_(2)production is still in its infancy,primarily because of limited H_(2)O_(2)production efficiency.Over the past few years,a wide range of inorganic,organic,and organic-inorganic hybrid photocatalysts have been developed via diverse synthetic and modification strategies to increase the H_(2)O_(2)yield.Among them,organic-inorganic hybrid photocatalysts have shown higher H_(2)O_(2)production performance than single-component systems;at the same time,the advancements and challenges of these hybrid systems have not been comprehensively reviewed.Therefore,this review summarizes the advantages/limitations,recent progress,and potential challenges of organic-inorganic hybrid photocatalysts for H_(2)O_(2)production.First,we elucidate the superiority of the photocatalytic H_(2)O_(2)production over the conventional anthraquinone oxidation process.Then,we summarize the advantages and limitations of inorganic,organic,and organic-inorganic hybrid photocatalysts and discuss in detail the design,synthetic strategies,and photochemical properties of organic-inorganic hybrid photocatalysts.Finally,this review outlines the challenges and outlook for future research in this emerging area.
基金financially supported by the Ph.D. start-up funds of Jiangxi Science and Technology Normal University (Nos. 2023BSQD11, 2023BSQD13)Jiangxi Province Key Laboratory of Organic Functional Molecules (No. 2024SSY05141)。
文摘The exploitation of organic-inorganic hybrid perovskites(OIHPs) as active layer materials for typical sandwich-structured resistive memories has attracted widespread interest due to the property of low power consumption and fast switching. However, the inherent thermal instability of perovskites limits the application of OIHPs-based resistive memories under extreme conditions, while the infiuence of thermal effects on their resistance change characteristics remains unclear. Herein, a novel 2D <100>-oriented high-temperature resistant OIHP [(BIZ-H)_(2)(PbBr_(4))]n(BIZ = benzimidazole) is prepared as an active layer material to fabricate FTO/[(BIZ-H)_(2)(PbBr_(4))]n/Ag resistive memory with excellent thermal reproducibility and stability up to 120℃. The increase in temperature leads to a decrease in the PbBr_(6) octahedral distortion in the crystal structure, an increase in hydrogen bonding between the(BIZ-H)+cation and the(PbBr_(4))_(n)^(2n-)layer, and a shortening of the spacing of the inorganic layers, which is found to result in the creation and predominance of thermally activated traps with increasing temperature. This work provides a new direction for the next generation of OIHPs-based resistive memories with high-temperature tolerance.
基金supported primarily by the National Natural Science Foundation of China(No.22109025)National Key Research and Development Program of China(No.2020YFA0710303)Natural Science Foundation of Fujian Province,China(No.2021J05121)。
文摘The development of lithium-metal batteries(LMBs)is seriously restricted by the out-of-control dendrites growth and infinite volume expansion.Herein,a pervasive organic-inorganic layer construction strategy is reported for the composite lithium metal anode with congener-derived organic-inorganic solid electrolyte interphase(SEI).In this strategy,the organic-inorganic Ag@polydopamine(Ag@PDA)layer is coated on the arbitrary substrates by a simple two-step method.The thin and stable congener-derived SEI is insitu formed with fewer inorganic components and more organic components during charging/discharging.The polydopamine with sufficient adhesion groups and lithiophilic Ag layer realize near-zero nucleation overpotential during lithium deposition.The low interface resistance and stable lithium deposition are achieved.Moreover,the practical areal and volumetric capacities of the composite anode with three-dimensional copper(3DCu)as the substrate are 10 mAh/cm^(2)and 1538 mAh/cm^3(vs.the mass of anode).The symmetrical cell shows very low polarization voltage(10 mV)and more than 2500 h cycles life at 1 mA/cm^(2)(1 mAh/cm^(2)).The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)-based full cells show improved capacity retention(82%)after 100 cycles at 0.5 C.The modified lithiophilic anode with congener-derived interphase provides a promising strategy to realize the next-generation dendrite-free LMBs.
基金supported by the National Natural Science Foundation of China(Nos.22122106,22071158,21971171,22305166)the Fundamental Research Funds from Sichuan University(No.2021SCUNL101)the Natural Science Foundation of Sichuan Province(No.2023NSFC1066)。
文摘Finding suitable strategies to effectively enhance the optical properties of materials are the goal being pursued by researchers.Herein,cation-anion synergetic interactions strategy was proposed to develop two novel organic-inorganic hybrid antimony-based optical materials,(C_(3)H_(5)N_(2))Sb F_(2)SO_(4)(I)and(C_(5)H_(6)N)Sb F_(2)SO_(4)(Ⅱ),which were obtained by introducing Sb^(3+)cation containing stereochemically active lone-pair(SCALP)and organicπ-conjugated cations into sulphate system.The synergistic interactions of the organicπ-conjugated cations,the inorganic[SbO_(2)F_(2)]^(3-)seesaw anions and the[SO_(4)]^(2-)distorted tetrahedra anions make their ultraviolet(UV)absorption edges approach 297 and 283 nm,respectively,and raise their birefringence up to 0.193@546 nm and 0.179@546 nm,respectively.Interestingly,although the two compounds have the same stoichiometric ratio and similar one-dimensional(1D)chain structure,they show opposite macroscopic symmetry,where the NCS compound(Ⅱ)exhibits a large secondharmonic generation(SHG)response(1.6 times that of KH_(2)PO_(4)).The two reported compounds are found to be promising UV optical materials in the experimental tests.
基金supported by the National Natural Science Foundation of China(No.22173090 and No.91950207)the Innovation Program for Quantum Science and Technology(No.2021ZD0303303)+2 种基金the National Key Research and Development Program of China(No.2016YFA0200602 and No.2018YFA0208702)the Anhui Initiative in Quantum Information Technologies(No.AHY090200)the USTC Key Directions Project Incubation Fund(No.WK2340000106).
文摘We report a mechanistic study of excitonic photoluminescence in predesigned hybrid organic-inorganic perovskite(HOIP)systems,i.e.,(DMAEA)Pb_(2)I_(6),(DMAPA)PbI_(4),(DEAEA)Pb_(2)I_(6),and(DEAPA)_(4)Pb_(5)I_(18),featuring targeted regulation of organic cations.Starting from the prototype DMAEA(i.e.,2-N,N-dimethylamino-l-ethylamine)for(DMAEA)Pb_(2)I_(6),the other three HOIPs differ only in the extensions with CH_(2)group(s)at the“head”or/and“tail”of DMAEA that is an“alkylated ammonia”.Their crystal structures are constructed and structural distortions are evaluated.The steady-state/transient absorption and emission spectroscopic characterizations,combined with the band-structure calculations,are conducted.The two different photoluminescence(PL)mechanisms are identified,i.e.,PL emissions dominated by free excitons for(DMAPA)PbI_(4)and by self-trapped excitons for(DMAEA)Pb_(2)I_(6),(DEAEA)Pb_(2)I_(6),and(DEAPA)_(4)Pb_(5)I_(18).The self-trapped excitonic effect involved in the latter three HOIPs is quantitatively analyzed.This work would be of guiding value for the design of HOIP systems based on organic-cation engineering,beneficial for the pertinent performance optimization in light-emitting applications.
文摘Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.
基金Project(51404038)supported by the National Natural Science Foundation of China
文摘Organic?inorganic hybrid coating on the surface of aluminum-tube used in refrigeration equipment using cerium ion (III) as the additive was fabricated by sol?gel method, and the structure of the coating was confirmed by FT-IR. The results of the characterization show that the corrosion resistance of the coating with 1.5 mmol/L cerium ion (III) gains significant improvement, in which the colour retention time of CuSO4 extends to 500 s, the anti-acid and alkali corrosion rates reduce by 67% and 70% compared with the blank one, respectively, and the salt spray tests also show good corrosion resistance. The electrochemical tests demonstrate that the self-corrosion current density and potential of the sample with hybrid coating are about 2.877×10?7 A/cm2 and?0.550 V, respectively. The metallographic and SEM images show that the hybrid coating is uniform and dense, and the EDS analysis confirms that the coating is mainly composed of Al, Si and Ce elements.
基金Supported by the National "863" Project (No. 2001 AA 320206)and Shanghai Nano Special Foundation(No. 0120nm034).
文摘A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content.
基金supported by a key project of Liaoning Province (2006215005)China Ministry of Education (209032)
文摘The effect of different concentrations of natural macromolecular compound on the characteristics of nutrient release in the membrane materials of organic-inorganic compound film-coated urea was discussed, and the optimal concentrations for better nutrient release was proposed. The characteristics of nutrient release of film-coated urea were evaluated by soil column leaching experiment. Organic-inorganic compound film-coated urea showed good characteristics of nutrient release, which could be well simulated by Logistic curve. The two parameters in this curve, a and r, can be used to present nutrient release of film-coated urea, and followed the order of B 〉 C 〉 A and C 〈 B 〈 A, respectively, indicating that the release was stronger with the increasing concentration of natural macromolecular compound in the membrane, which implied better controllability of nutrient release. The concentration of 5% of natural macromolecular compound showed better characteristic of nutrient release and can be utilized as a membrane material combined with inorganic mineral powders to develop film-coated slow-release fertilizer.
基金This project was financially supported by the National Science Foundation of China (No. 20371012)
文摘Two new organic-inorganic compounds [(CH2)5NH2]3[PMo12O40]·3[(CH2)NH] 1 and [(CH2)5NH2]6[P2Mo18O62]·5H2O 2 have been synthesized using conventional and hydrothermal methods, respectively, and characterized by elemental analyses, IR, TG and single-crystal X-ray diffraction. X-ray analyses show that in these compounds heteropolymolybdates [PMo12O40]^3- and [P2Mo18O62]^6- are reserved their Keggin or Dawson structures and linked to piperidine through electrostatic and hydrogen-bonding interactions.
基金financially supported by the National Natural Science Foundation of China(No.20871071)the Science and Technology Commission Foundation of Tianjin(No.09JCYBJC03600 and 10JCYBJC03900)
文摘Polythiophene/WO3(PTP/WO3)organic-inorganic hybrids were synthesized by an in situ chemical oxidative polymerization method,and char- acterized by X-ray diffraction(XRD),transmission electron microscopy(TEM)and thermo-gravimetric analysis(TGA).The Polythiophene/ WO3 hybrids have higher thermal stability than pure polythiophene,which is beneficial to potential application as chemical sensors.Gas sensing measurements demonstrate that the gas sensor based on the Polythiophene/WO3 hybrids has high response and good selectivity for de- tecting NO2 of ppm level at low temperature.Both the operating temperature and PTP contents have an influence on the response of PTP/WO3 hybrids to NO2.The 10 wt%PTP/WO3 hybrid showed the highest response at low operating temperature of 70-C.It is expected that the PTP/WO3 hybrids can be potentially used as gas sensor material for detecting the low concentration of NO2 at low temperature.
基金financially supported by the National Natural Science Foundation of China (Nos. 21564006, 21561022, 21644014, 21788102, and 21865016)
文摘Organic dyes based hybrid organic-inorganic luminescent nanomaterials with high quantum efficiency, good physical or chemical stability, and favorable biocompatibility, have attracted growing attention recently because of their important applications in the areas of biomedical imaging, chemical sensors, and light-emitting diodes(LEDs). Nevertheless, conventional fluorescence molecules suffer from aggregation-caused quenching(ACQ) when they are doped into inorganic nanomaterials. Aggregation-induced emission(AIE) is an abnormal and intriguing fluorescent phenomenon that has aroused increasing interest for various applications especially in biomedical fields. Compared with conventional organic dyes, the AIE-active molecules will emit more intense fluorescence in their aggregates or solid states. It provides an elegant route to overcome the drawbacks of conventional organic molecules. Over the past few decades, the fabrication and surface modification of various organic-inorganic luminescent composites doped with AIE-active molecules have been reported. Therefore, it is highly desirable to summarize these advances. In this review, recent advances and progress in constructing various AIEgens-doped organic-inorganic hybrid nanocomposites and their subsequent surface modification were summarized. We hope this review could further promote the research of AIE-active functional materials.
基金Internal Research Project of Shaanxi Provincial Land Engineering Construction Group Co.,Ltd.(DJNY2019-6).
文摘The experiment was conducted in the abandoned land of Liangjia Village,Huayin City,Shaanxi Province from April to September 2019.The experimental crop was spring maize.A total of six treatments were set up in a randomized block design.The moisture content of the top 0-60 cm soil was determined regularly,and the yield and quality indices of maize at maturity were checked.The results show that:(i)combined organic-inorganic fertilization increased the yield of spring maize by 3%-8%.(ii)Compared with CK,fertilization treatments significantly improved the water use efficiency of spring maize,with an increase of 59.2%.The average water use efficiency of three combined organic-inorganic fertilization treatments was 27.81 kg/(ha·mm).Compared with CON,combined application of organic and inorganic fertilizers significantly improved the water use efficiency of spring maize,with an increase of 12.5%.(iii)The combined application of organic and inorganic fertilizers increased the moisture,total starch,crude protein and crude fat contents,and reduced crude fiber content of maize kernels.However,with the increase of the proportion of organic fertilizer,the crude protein content of maize kernels decreased.(iv)Yield of spring maize showed a significant parabolic relationship with soil water consumption.In summary,70%inorganic fertilizer+30%organic fertilizer is a scientific and reasonable way of fertilization.
基金financially supported by the National Key Research and Development Program of China(Grant No.2019YFA0708504)National Natural Science Foundation of China(Grant Nos.U20B6001,42141021,42102185)。
文摘Continental epithermal ore deposits are commonly associated with sedimentary organic matter,oils or solid bitumen.These organics embedded in mineral deposits can convey valuable information of the ore genesis.However,the extent to which the formation of ore minerals was recorded by organic compounds remains largely unknown,as also is how metal-rich ores interfere with the molecular proxies in the temperature regime envisaged for hydrothermal activity.The molecular compositional changes of various polycyclic aromatic steranes and polycyclic aromatic hydrocarbons and compounds derived from the Jinding Pb/Zn deposit,SW China provide new data.Aliphatic regular steranes are present as traces.The transformation from polycyclic aromatic steranes to unsubstituted polycyclic aromatic hydrocarbons is observed to show an increased trend with increasing hydrothermal alteration levels;this is consistent with the transformation from unsubstituted polycyclic aromatic hydrocarbons to heterocyclic compounds.Dehydrocyclization(aromatization)of polycyclic biological compounds and hydrodecyclization(dearomatization)of polycyclic aromatic compounds are two important reaction pathways in hydrothermal systems with moderate temperature.This detailed investigation of organicinorganic interactions of two groups of polycyclic compounds with metal-rich ores provides insights into the questions on how and to what extent the formation of Pb/Zn deposits can be recorded by organics.This work will improve our understanding of carbon reduction,oxidation or condensation in the deep Earth and the carbon exchange between the Earth's crust and mantle,and may shed light on the processes for ultra-deep hydrocarbon exploration.
基金supported by the National Natural Science Foundation of China(Nos.22175082,91856114 and 21703033).
文摘Chiral organic-inorganic metal halide semiconductors(OIMHSs)have recently attracted numerous interests due to their unique chirality,structural tunability,and extensive physical properties.However,most reported chiral OIMHSs contain toxic lead,which will be a potential obstacle to their further applications.Herein,we successfully synthesized a novel chiral lead-free tin(IV)-based OIMHS[(R)-3-hydroxyquinuclidinium]_(2)SnCl_(6)([R-HQ]_(2)SnCl_(6)).It exhibits a wide band gap(Eg)of about 4.11 eV.Moreover,[R-HQ]_(2)SnCl6 undergoes a phase transition around 330 K(Tc)and shows distinct dielectric switching characteristics with good repeatability.This work enriches the chiral lead-free OIMHS family and stimulates further exploration of chiral lead-free OIMHS switching materials.
基金the National Natural Science Foundation of China(Nos.11675051,51302079,51702138)the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘Hybrid organic-inorganic perovskite materials have attracted significant atte ntion of most re searchers in recently years,which is ascribed to the superior photoelectric properties,such as the suitable band gaps for harvesting sunlight,and exhibit high optical adsorption,high charge-carrier lifetimes and long diffusion lengths.The photodetectors,light-emitting diodes,solar cells and photocatalysts represent the remarkable applications for the hybrid organic-inorganic perovskite materials.Herein,we review the recent progress of hybrid organic-inorganic perovskite-based photodetectors,light-emitting diodes,solar cells and photocatalysts.The challenges and outlook for the hybrid organic-inorganic perovskitebased photodetectors,light-emitting diodes,solar cells and photocatalysts are considered.
基金Financially supported by the National Natural Science Foundation of China(No.21571094,21661021,21865015)the Graduate Student Creativity Funding of Jiangxi Province(No.YC2015-S008)
文摘Reactions of piperidine derivatives 4-(aminomethyl)piperidine(4-AMPD) and 1-methylpiperidin-4-amine(1-MPDA) with semi-conductive metal iodine SbI3 and PbI2 in concentrated HI aqueous solution afforded two one-dimensional(1 D) chain compounds [(4-AMPD)SbI5]n(1), [(1-MPDA)SbI5]n(2) and a two-dimensional(2 D) single layered organicinorganic hybrid material [(1-MPDA)PbI4]n(3), which were confirmed by X-ray single-crystal diffraction, infrared(IR) spectroscopy and powder X-ray diffraction(PXRD). Simultaneously, compounds 1~3 exhibit strong emission peaks at 600 nm for 1 and 2 and 570 nm for 3, which were originated from their inorganic moieties.