Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to low...Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. Here, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanoflber vip incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single- crystalline nature. As a result, the incorporation of the PB1 vip introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm^2 V^-1 s^-1 even though 26.4% of the channel area is taken over by the vip. As such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.展开更多
As organic thin film transistors(OTFTs)are set to play a crucial role in flexible and cost-effective electronic applica-tions,this paper investigates a high-mobility 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pe...As organic thin film transistors(OTFTs)are set to play a crucial role in flexible and cost-effective electronic applica-tions,this paper investigates a high-mobility 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pentacene)OTFT for use in flexi-ble electronics.The development of such high-mobility devices necessitates precise device modeling to support technology opti-misation and circuit design.The details of numerical simulation technique is discussed,in which,the electrical behavior of the device is well captured by fine tuning basic semiconductor equations.This technology computer-aided design(TCAD)has been validated with exprimental data.In addition,we have discussed about compact model fitting of the devices as well as parameter extraction procedure employed.This includes verification of Silvaco ATLAS finite element method(FEM)based results against experimental data gained from fabricated OTFT devices.Simulations for p-type TFT-based inverter are also per-formed to assess the performance of compact model in simple circuit simulation.展开更多
Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electroni...Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electronic properties,and solution processability.These organic polymers present a compelling alternative to traditional inorganic semiconductors,offering the potential for a new generation of optoelectronic devices.This review explores the evolving role of CPs,exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties.We highlight notable progress toward developing faster,more efficient,and environmentally friendly devices by analyzing recent advancements in CP-based devices,including organic photovoltaics,field-effect transistors,and nonvolatile memories.The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems.As ongoing research pushes the frontiers of molecular engineering and device architecture,CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance,sustainability,and adaptability.展开更多
In recent years, fused aromatic dithienobenzodithiophene(DTBDT)-based functional semiconductors have been potential candidates for organic electronics. Due to the favorable features of excellent planarity, strong crys...In recent years, fused aromatic dithienobenzodithiophene(DTBDT)-based functional semiconductors have been potential candidates for organic electronics. Due to the favorable features of excellent planarity, strong crystallinity, high mobility, and so on, DTBDT-based semiconductors have demonstrated remarkable performance in organic electronic devices, such as organic feld-effect transistor(OFET), organic photovoltaic(OPV), organic photodetectors(OPDs). Driven by this success, recent developments in the area of DTBDT-based semiconductors for applications in electronic devices are reviewed, focusing on OFET, OPV, perovskite solar cells(PSCs), and other organic electronic devices with a discussion of the relationship between molecular structure and device performance. Finally, the remaining challenges, and the key research direction in the near future are proposed, which provide a useful guidance for the design of DTBDT-based materials.展开更多
Organic semiconductors are promising candidates as active layers in flexible and biocompatible electronics owing to their solution processability and molecular design flexibility.However,it remains necessary to establ...Organic semiconductors are promising candidates as active layers in flexible and biocompatible electronics owing to their solution processability and molecular design flexibility.However,it remains necessary to establish a green processing approach to acquire desirable electrical properties for scalable industrial applications.Here,a highly efficient and environmentally friendly post-treatment method using liquid nitrogen as a cooling bath is developed to optimize the aggregation structure and electrical performance of organic semiconductors.The carrier mobility has increased by nearly 60%with this treatment,achieving a performance boost comparable to that of traditional annealing methods.This performance improvement is attributable to the denser aggregation structure and enhanced molecular ordering compared with those of as-cast semiconducting polymer films.Impressively,the entire process can be completed within a few minutes without additional vacuum or high-temperature conditions,offering an economical and efficient alternative to traditional methods.Furthermore,the enhancement effect and long-term stability of this treatment are validated across a wide range of organic semiconductors,positioning this green and versatile approach as a promising substitute for conventional post-treatment,thereby facilitating the development of next-generation sustainable electronics.展开更多
Welcome to this virtual special issue focusing on organic and polymer materials for electronics published in Chinese Chemical Letters since 2017. For more than a century, people have always believed that organic compo...Welcome to this virtual special issue focusing on organic and polymer materials for electronics published in Chinese Chemical Letters since 2017. For more than a century, people have always believed that organic compounds cannot be well employed for electronic conducting. Till 2000,Heeger,MacDiarmid and Shirakawa were acknowledged by the Nobel Prize of chemistry for展开更多
The AgTCNQ thin-film was prepared by vacuum vapor co-deposition and characterized by infrared spectral analysis,and then a uniform AgTCNQ (TCNQ-- 7,7,8,8-tetracyanoquinodimethane) thin-film layer was sandwiched in a...The AgTCNQ thin-film was prepared by vacuum vapor co-deposition and characterized by infrared spectral analysis,and then a uniform AgTCNQ (TCNQ-- 7,7,8,8-tetracyanoquinodimethane) thin-film layer was sandwiched in a Ti/AgTCNQ/Ati crossbar structure array as organic bistable devices (OBD).A reversible and reproducible memory switching property,caused by intermolecular charge transfer (CT) in the AgTCNQ thin-film, was observed in the organic bista- ble devices. The positive threshold voltage from the high impedance state to the low impedance was about 3.8-5V, with the reverse phenomenon occurring at a negative voltage of - 3.5- - 4. 4V,lower than that with a CuTCNQ active layer. The crossbar array of OBDs with AgTCNQ is promising for nonvolatile organic memory applications.展开更多
Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materia...Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.展开更多
Organic field-effect transistors are of great importance to electronic devices.With the emergence of various preparation techniques for organic semiconductor materials,the device performance has been improved remarkab...Organic field-effect transistors are of great importance to electronic devices.With the emergence of various preparation techniques for organic semiconductor materials,the device performance has been improved remarkably.Among all of the organic materials,single crystals are potentially promising for high performances due to high purity and well-ordered molecular arrangement.Based on organic single crystals,alignment and patterning techniques are essential for practical industrial application of electronic devices.In this review,recently developed methods for crystal alignment and patterning are described.展开更多
In the current shift from conventional fossil-fuel-based materials to renewable energy,ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties.The inte...In the current shift from conventional fossil-fuel-based materials to renewable energy,ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties.The integration of sustainable materials in electronics provides industrial benefits from wasted bio-origin resources and preserves the environment.This review covers the use of sustainable materials as components in organic electronics,such as substrates,insulators,semiconductors,and conductors.We hope this review will stimulate interest in the potential and practical applications of sustainable materials for green and sustainable industry.展开更多
Organic field-effect transistors(OFETs)refer to field-effect transistors that use organic semiconductors as channel materials.Owing to the advantages of organic materials such as solution processability and intrinsic ...Organic field-effect transistors(OFETs)refer to field-effect transistors that use organic semiconductors as channel materials.Owing to the advantages of organic materials such as solution processability and intrinsic flexibility,OFETs are expected to be applicable in emergent technologies including wearable electronics and sensors,flexible displays,internet-of-things,neuromorphic computing,etc.Improving the electrical performance and developing multifunctionalities of OFETs are two major and closely relevant aspects for OFETs-related research.The former one aims for investigating the device physics and expanding the horizons of OFETs,while the later one is critical for leading OFETs into practical and emergent applications.The development in each of the two aspects would undoubtfully promote the other and bring more confidence for future development of OFETs.Hence,this review is divided into two parts that respectively summarize the recent progress in high-performance OFETs and multifunctional OFETs.展开更多
Diketopyrrolopyrrole(DPP)and related derivatives have drawn great attention due to their applications in organic optical/electronic materials.Progress in these materials is associated with developments in the synthese...Diketopyrrolopyrrole(DPP)and related derivatives have drawn great attention due to their applications in organic optical/electronic materials.Progress in these materials is associated with developments in the syntheses of the DPP family.Chemical modification of DPP at nitrogen atom,including N-alkylation and N-arylation,is an effective strategy to improve its physical and chemical properties,such as solubility,optical and semiconducting properties.However,N-arylation of DPPs remains challenging compared to the easily accessible N-alkylation.Herein,the synthesis of N-aryl DPP derivatives and correlatedπ-expanded DPPs are summarized,and their optical/electronic properties are introduced.The future perspectives of N-aryl DPP derivatives are also discussed.展开更多
In this work, a new star-shaped electron acceptor based on porphyrin as core, rhodanine and benzothiadiazole as end groups, was developed for non-fullerene solar cells. The molecule shows three distinct absorption reg...In this work, a new star-shaped electron acceptor based on porphyrin as core, rhodanine and benzothiadiazole as end groups, was developed for non-fullerene solar cells. The molecule shows three distinct absorption regions due to the Sorer and Q-bands of the porphyrin and the intramolecular charge transfer in the molecule. This molecule as electron acceptor was applied into non-fullerene solar cells by using a diketopyrrolopyrrole-based conjugated polymer as electron donor, An initial PCE of 1.9% was achieved with a broad photo-response from 300-850 nm. The results demonstrate that porphyrin can be used to design near-infrared electron acceptors for organic solar cells.展开更多
In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC developm...In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC development, device architecture and material design features, we exemplified the exciting progresses made in field by exploiting organic π-functional materials based hole and electron transport layers(HTLs and ETLs) to enable high-performance PVSCs.展开更多
Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostruct...Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.展开更多
A series of star-shaped molecules with benzene core and naphthalimides derivatives end groups have been designed to explore their optical,electronic,and charge transport properties as charge transport and/or luminesce...A series of star-shaped molecules with benzene core and naphthalimides derivatives end groups have been designed to explore their optical,electronic,and charge transport properties as charge transport and/or luminescent materials for organic light-emitting diodes(OLEDs). The frontier molecular orbitals(FMOs) analysis has turned out that the vertical electronic transitions of absorption and emission are characterized as intramolecular charge transfer(ICT). The calculated results show that the optical and electronic properties of star-shaped molecules are affected by the substituent groups in N-position of 1,8-naphthalimide ring. Our results suggest that star-shaped molecules with n-butyl(1),benzene(2),thiophene(3),thiophene S?,S?-dioxide(4),benzo[c][1,2,5]thiadiazole(5),and 2,7a-dihydrobenzo[d]thiazole(6) fragments are expected to be promising candidates for luminescent and electron transport materials for OLEDs. This study should be helpful in further theoretical investigations on such kind of systems and also to the experimental study for charge transport and/or luminescent materials for OLEDs.展开更多
Conductive polymer composites(CPCs)are widely used in the field of organic electronics as the material basis of high-performance devices,due to their obvious advantages including electrical conductivity,lightness,proc...Conductive polymer composites(CPCs)are widely used in the field of organic electronics as the material basis of high-performance devices,due to their obvious advantages including electrical conductivity,lightness,processability and so on.Research on CPCs has focused on the enhancement of their electrical features and the exploration of their application prospects from conventional fields to heated emerging areas like flexible,stretchable,wearable,biological and biomedical electronics,where their mechanical properties are quite critical to determine their practical device performances.Also,a main challenge to ensure their safety and reliability is on the synergistic enhancement of their electrical behavior and mechanical properties.Herein,we systematically review the research progress of CPCs with different conductive fillers(metals and their oxides,carbon-based materials,intrinsically conductive polymers,MXenes,etc.)relying on rich material forms(hydrogel,aerogel,fiber,film,elastomer,etc.)in terms of mechanical property regulation strategies,mainly relying on optimized composite material systems and processing techniques.A summary and prospective overview of current issues and future developments in this field also has been presented.展开更多
CONSPECTUS:Organic thin films,with thickness ranging from tens to hundreds of nanometers,are foundational to organic electronic devices.Yet,vertical phase separation during film deposition and postprocessing,along wit...CONSPECTUS:Organic thin films,with thickness ranging from tens to hundreds of nanometers,are foundational to organic electronic devices.Yet,vertical phase separation during film deposition and postprocessing,along with the corresponding variations in crystallinity and photoelectric properties along the film-depth direction,critically influences device performance.Traditional characterization methods,such as crosssectional electron microscopy,neutron reflectivity,or incremental etching coupled with mass spectrometry,suffer from key limitations:sample-destructive analysis,high-cost or inaccessible instrument,or an inability to directly probe depth-dependent optoelectronic behaviors inside the film.These shortcomings hinder the optimal design of highperformance devices.展开更多
The key building blocks,tetrachlorinated terrylene diimides and the targeted sila-annulated terrylene diimides(Si-TDIs and 2Si-TDIs)were synthesized for the first time.Single-crystal analysis verified the almost plana...The key building blocks,tetrachlorinated terrylene diimides and the targeted sila-annulated terrylene diimides(Si-TDIs and 2Si-TDIs)were synthesized for the first time.Single-crystal analysis verified the almost planar molecular configurations of both Si-TDIs and 2Si-TDIs.They exhibited intriguing optical properties including red-shifted absorption and near-infrared emission properties with excellent fluorescence quantum yields,as well as precisely controlled HOMO/LUMO energy levels by Si-heteroannulation.The single-crystal organic field-effect transistors based on 2Si-TDI 5a featuring long and branched alkyl chains demonstrated well-balanced ambipolar transporting properties with electron/hole mobilities of 0.10/0.18 cm2 V^(−1)s^(−1).展开更多
Donor-acceptor(D-A)conjugated polymers comprising electron-deficient aromatic dicarboximide units represent an important type of organic semiconductors,especially for electron transporting properties.Pyrene-1,5,6,10-t...Donor-acceptor(D-A)conjugated polymers comprising electron-deficient aromatic dicarboximide units represent an important type of organic semiconductors,especially for electron transporting properties.Pyrene-1,5,6,10-tetracarboxyl diimide(PyDI),a new PAH dicarboximide molecule recently reported by us,provides a fine balance between the electron-stabilizing ability andπ-stacking tendency,as compared to the naphthalenediimide(NDI)and perylenediimide(PDI)analogues.In this study,using thienylene-vinylene-thienylene(TVT)and biselenophene(BS)as the electron donating comonomer,along with PyDI as the acceptor moiety,we develop two new D-A type conjugated polymers,which exhibit impressive electron-transporting performance.Specifically,in the solution-processed OFET devices,electron mobility of 0.18 and 0.20 cm^(2)·V^(−1)·s^(−1) are achieved with these polymers,respectively.Such findings further prove the optimal potential of PyDI for application as an electron-acceptor building block in the development of polymeric n-type semiconductors among all various high-performance functional D-A polymers.展开更多
基金supported by the 973 Program (No. 2014CB643503)National Natural Science Foundation of China (Nos. 51625304, 51373150, 51461165301, 51573055)the Open Foundation Project of the State Key Lab of Silicon Materials (No. SKL2017-08)
文摘Multi-component active materials are widely used for organic electronic devices, with every component contributing complementary and synergistic optoelectronic functions. Mixing these components generally leads to lowered crystallinity and weakened charge transport. Therefore, preparing the active materials without substantially disrupting the crystalline lattice is highly desired. Here, we show that crystallization of TIPS-pentacene from solutions in the presence of fluorescent nanofibers of a perylene bisimide derivative (PBI) leads to formation of composites with nanoflber vip incorporated in the crystal host. In spite of the binary composite structure, the TIPS-pentacene maintains the single- crystalline nature. As a result, the incorporation of the PB1 vip introduces additional fluorescence function but does not significantly reduce the charge transport property of the TIPS-pentacene host, exhibiting field-effect mobility as high as 3.34 cm^2 V^-1 s^-1 even though 26.4% of the channel area is taken over by the vip. As such, this work provides a facile approach toward high-performance multifunctional organic electronic materials.
基金The DST government of India is appreciated by the researchers for giving them the early career research grant under the project ECR/2017/000179。
文摘As organic thin film transistors(OTFTs)are set to play a crucial role in flexible and cost-effective electronic applica-tions,this paper investigates a high-mobility 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pentacene)OTFT for use in flexi-ble electronics.The development of such high-mobility devices necessitates precise device modeling to support technology opti-misation and circuit design.The details of numerical simulation technique is discussed,in which,the electrical behavior of the device is well captured by fine tuning basic semiconductor equations.This technology computer-aided design(TCAD)has been validated with exprimental data.In addition,we have discussed about compact model fitting of the devices as well as parameter extraction procedure employed.This includes verification of Silvaco ATLAS finite element method(FEM)based results against experimental data gained from fabricated OTFT devices.Simulations for p-type TFT-based inverter are also per-formed to assess the performance of compact model in simple circuit simulation.
基金Khalifa University,Abu Dhabi,for the generous support of this researchthe financial support from the Khalifa University Research&Innovation Grant(RIG-2023-005)。
文摘Conjugated polymers(CPs)have emerged as an interesting class of materials in modern electronics and photonics,characterized by their unique delocalizedπ-electron systems that confer high flexibility,tunable electronic properties,and solution processability.These organic polymers present a compelling alternative to traditional inorganic semiconductors,offering the potential for a new generation of optoelectronic devices.This review explores the evolving role of CPs,exploring the molecular design strategies and innovative approaches that enhance their optoelectronic properties.We highlight notable progress toward developing faster,more efficient,and environmentally friendly devices by analyzing recent advancements in CP-based devices,including organic photovoltaics,field-effect transistors,and nonvolatile memories.The integration of CPs in flexible sustainable technologies underscores their potential to revolutionize future electronic and photonic systems.As ongoing research pushes the frontiers of molecular engineering and device architecture,CPs are poised to play an essential role in shaping next-generation technologies that prioritize performance,sustainability,and adaptability.
基金supported by the National Natural Science Foundation of China(21774003)Beihang University Youth Talent Support Program(YWF-18-BJ-J-218)。
文摘In recent years, fused aromatic dithienobenzodithiophene(DTBDT)-based functional semiconductors have been potential candidates for organic electronics. Due to the favorable features of excellent planarity, strong crystallinity, high mobility, and so on, DTBDT-based semiconductors have demonstrated remarkable performance in organic electronic devices, such as organic feld-effect transistor(OFET), organic photovoltaic(OPV), organic photodetectors(OPDs). Driven by this success, recent developments in the area of DTBDT-based semiconductors for applications in electronic devices are reviewed, focusing on OFET, OPV, perovskite solar cells(PSCs), and other organic electronic devices with a discussion of the relationship between molecular structure and device performance. Finally, the remaining challenges, and the key research direction in the near future are proposed, which provide a useful guidance for the design of DTBDT-based materials.
基金supported by the National Key R&D Program of China(No.2022YFB3603804)Natural Science Foundation of Shanghai(No.22ZR1407800)。
文摘Organic semiconductors are promising candidates as active layers in flexible and biocompatible electronics owing to their solution processability and molecular design flexibility.However,it remains necessary to establish a green processing approach to acquire desirable electrical properties for scalable industrial applications.Here,a highly efficient and environmentally friendly post-treatment method using liquid nitrogen as a cooling bath is developed to optimize the aggregation structure and electrical performance of organic semiconductors.The carrier mobility has increased by nearly 60%with this treatment,achieving a performance boost comparable to that of traditional annealing methods.This performance improvement is attributable to the denser aggregation structure and enhanced molecular ordering compared with those of as-cast semiconducting polymer films.Impressively,the entire process can be completed within a few minutes without additional vacuum or high-temperature conditions,offering an economical and efficient alternative to traditional methods.Furthermore,the enhancement effect and long-term stability of this treatment are validated across a wide range of organic semiconductors,positioning this green and versatile approach as a promising substitute for conventional post-treatment,thereby facilitating the development of next-generation sustainable electronics.
文摘Welcome to this virtual special issue focusing on organic and polymer materials for electronics published in Chinese Chemical Letters since 2017. For more than a century, people have always believed that organic compounds cannot be well employed for electronic conducting. Till 2000,Heeger,MacDiarmid and Shirakawa were acknowledged by the Nobel Prize of chemistry for
文摘The AgTCNQ thin-film was prepared by vacuum vapor co-deposition and characterized by infrared spectral analysis,and then a uniform AgTCNQ (TCNQ-- 7,7,8,8-tetracyanoquinodimethane) thin-film layer was sandwiched in a Ti/AgTCNQ/Ati crossbar structure array as organic bistable devices (OBD).A reversible and reproducible memory switching property,caused by intermolecular charge transfer (CT) in the AgTCNQ thin-film, was observed in the organic bista- ble devices. The positive threshold voltage from the high impedance state to the low impedance was about 3.8-5V, with the reverse phenomenon occurring at a negative voltage of - 3.5- - 4. 4V,lower than that with a CuTCNQ active layer. The crossbar array of OBDs with AgTCNQ is promising for nonvolatile organic memory applications.
基金Research funding from the Shanghai Municipal Education Commission in the framework of the oriental scholar and distinguished professor designationfunding from the National Natural Science Foundation of China(NSFC)
文摘Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging technologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials,conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique properties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.
基金supported by the 973 Program(No.2014CB643503)National Natural Science Foundation of China(Nos.51373150,51461165301)Zhejiang Province Natural Science Foundation(No.LZ13E030002)
文摘Organic field-effect transistors are of great importance to electronic devices.With the emergence of various preparation techniques for organic semiconductor materials,the device performance has been improved remarkably.Among all of the organic materials,single crystals are potentially promising for high performances due to high purity and well-ordered molecular arrangement.Based on organic single crystals,alignment and patterning techniques are essential for practical industrial application of electronic devices.In this review,recently developed methods for crystal alignment and patterning are described.
基金This work was supported by a grant from the National Research Foundation(NRF)funded by the Korean Government(MSIT,2017R1E1A1A01072798 and 2019K1A3A1A14065772).
文摘In the current shift from conventional fossil-fuel-based materials to renewable energy,ecofriendly materials have attracted extensive research interest due to their sustainability and biodegradable properties.The integration of sustainable materials in electronics provides industrial benefits from wasted bio-origin resources and preserves the environment.This review covers the use of sustainable materials as components in organic electronics,such as substrates,insulators,semiconductors,and conductors.We hope this review will stimulate interest in the potential and practical applications of sustainable materials for green and sustainable industry.
基金supported by the National Key Research and Development Program of China(Nos.2019YFE0116700 and 2019YFA0705900)Ministry of Science and Technology,National Natural Science Foundation of China(Nos.62075224,22021002,51873182 and 52103231)+3 种基金Zhejiang Province Science and Technology Plan(No.2021C04012)Zhejiang Provincial Department of Science and Technologysupported by the Lu Jiaxi International Teams Project(No.GJTD-2020–02)the Fundamental Research Funds for the Central Universities(No.2021QNA4033)。
文摘Organic field-effect transistors(OFETs)refer to field-effect transistors that use organic semiconductors as channel materials.Owing to the advantages of organic materials such as solution processability and intrinsic flexibility,OFETs are expected to be applicable in emergent technologies including wearable electronics and sensors,flexible displays,internet-of-things,neuromorphic computing,etc.Improving the electrical performance and developing multifunctionalities of OFETs are two major and closely relevant aspects for OFETs-related research.The former one aims for investigating the device physics and expanding the horizons of OFETs,while the later one is critical for leading OFETs into practical and emergent applications.The development in each of the two aspects would undoubtfully promote the other and bring more confidence for future development of OFETs.Hence,this review is divided into two parts that respectively summarize the recent progress in high-performance OFETs and multifunctional OFETs.
基金the financial support from National Natural Science Foundation of China(NSFC,Nos.22175081 and 21833005)Beijing National Laboratory for Molecular Sciences(No.BNLM202010)+1 种基金State Key Laboratory of Physical Chemistry of Solid Surfaces(No.202108)Guangdong Provincial Key Laboratory of Catalysis(No.20210701)。
文摘Diketopyrrolopyrrole(DPP)and related derivatives have drawn great attention due to their applications in organic optical/electronic materials.Progress in these materials is associated with developments in the syntheses of the DPP family.Chemical modification of DPP at nitrogen atom,including N-alkylation and N-arylation,is an effective strategy to improve its physical and chemical properties,such as solubility,optical and semiconducting properties.However,N-arylation of DPPs remains challenging compared to the easily accessible N-alkylation.Herein,the synthesis of N-aryl DPP derivatives and correlatedπ-expanded DPPs are summarized,and their optical/electronic properties are introduced.The future perspectives of N-aryl DPP derivatives are also discussed.
基金supported by the Recruitment Program of Global Youth Experts of ChinaThe National Natural Science Foundation of China(Nos. 21574138, 51603209 and 91633301)the Strategic Priority Research Program of the Chinese Academy of Sciences(No. XDB12030200)
文摘In this work, a new star-shaped electron acceptor based on porphyrin as core, rhodanine and benzothiadiazole as end groups, was developed for non-fullerene solar cells. The molecule shows three distinct absorption regions due to the Sorer and Q-bands of the porphyrin and the intramolecular charge transfer in the molecule. This molecule as electron acceptor was applied into non-fullerene solar cells by using a diketopyrrolopyrrole-based conjugated polymer as electron donor, An initial PCE of 1.9% was achieved with a broad photo-response from 300-850 nm. The results demonstrate that porphyrin can be used to design near-infrared electron acceptors for organic solar cells.
基金financial support from the 973 program(No.2014CB643503)the National Natural Science Foundation of China(No.21474088)+2 种基金financial support from NSFC(No.21674093)the National 1000 Young Talents Program hosted by China100 Talents Program by Zhejiang University
文摘In this review, we highlight the recent development of organic π-functional materials as buffer layers in constructing efficient perovskite solar cells(PVSCs). By following a brief introduction on the PVSC development, device architecture and material design features, we exemplified the exciting progresses made in field by exploiting organic π-functional materials based hole and electron transport layers(HTLs and ETLs) to enable high-performance PVSCs.
基金Supported by the National Science and Technology Major Project of China under Grant No 2013ZX02308-002the National Natural Sciences Foundation of China under Grant Nos 61574108,61334002,61474086 and 61306017
文摘Nearly lattice-matched InAIGaN/GaN heterostructure is grown on sapphire substrates by pulsed metal organic chemical vapor deposition and excellent high electron mobility transistors are fabricated on this heterostructure. The electron mobility is 1668.08cm2/V.s together with a high two-dimensional-electron-gas density of 1.43 × 10^13 cm-2 for the InAlCaN/CaN heterostructure of 2Onto InAlCaN quaternary barrier. High electron mobility transistors with gate dimensions of 1 × 50 μm2 and 4μm source-drain distance exhibit the maximum drain current of 763.91 mA/mm, the maximum extrinsic transconductance of 163.13 mS/mm, and current gain and maximum oscillation cutoff frequencies of 11 GHz and 21 GHz, respectively.
基金Support by the National Natural Science Foundation of China(No.21563002)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.2015MS0201)the Research Program of Sciences at Universities of Inner Mongolia Autonomous Region(No.NJZZ235)
文摘A series of star-shaped molecules with benzene core and naphthalimides derivatives end groups have been designed to explore their optical,electronic,and charge transport properties as charge transport and/or luminescent materials for organic light-emitting diodes(OLEDs). The frontier molecular orbitals(FMOs) analysis has turned out that the vertical electronic transitions of absorption and emission are characterized as intramolecular charge transfer(ICT). The calculated results show that the optical and electronic properties of star-shaped molecules are affected by the substituent groups in N-position of 1,8-naphthalimide ring. Our results suggest that star-shaped molecules with n-butyl(1),benzene(2),thiophene(3),thiophene S?,S?-dioxide(4),benzo[c][1,2,5]thiadiazole(5),and 2,7a-dihydrobenzo[d]thiazole(6) fragments are expected to be promising candidates for luminescent and electron transport materials for OLEDs. This study should be helpful in further theoretical investigations on such kind of systems and also to the experimental study for charge transport and/or luminescent materials for OLEDs.
基金This work was financially supported by the Academic Development Project of TongXin Funds(No.2024161804).
文摘Conductive polymer composites(CPCs)are widely used in the field of organic electronics as the material basis of high-performance devices,due to their obvious advantages including electrical conductivity,lightness,processability and so on.Research on CPCs has focused on the enhancement of their electrical features and the exploration of their application prospects from conventional fields to heated emerging areas like flexible,stretchable,wearable,biological and biomedical electronics,where their mechanical properties are quite critical to determine their practical device performances.Also,a main challenge to ensure their safety and reliability is on the synergistic enhancement of their electrical behavior and mechanical properties.Herein,we systematically review the research progress of CPCs with different conductive fillers(metals and their oxides,carbon-based materials,intrinsically conductive polymers,MXenes,etc.)relying on rich material forms(hydrogel,aerogel,fiber,film,elastomer,etc.)in terms of mechanical property regulation strategies,mainly relying on optimized composite material systems and processing techniques.A summary and prospective overview of current issues and future developments in this field also has been presented.
基金financially supported by Natural Science Foundation of China(Grant Nos.52273026,51873172,21574103 and 51473132)。
文摘CONSPECTUS:Organic thin films,with thickness ranging from tens to hundreds of nanometers,are foundational to organic electronic devices.Yet,vertical phase separation during film deposition and postprocessing,along with the corresponding variations in crystallinity and photoelectric properties along the film-depth direction,critically influences device performance.Traditional characterization methods,such as crosssectional electron microscopy,neutron reflectivity,or incremental etching coupled with mass spectrometry,suffer from key limitations:sample-destructive analysis,high-cost or inaccessible instrument,or an inability to directly probe depth-dependent optoelectronic behaviors inside the film.These shortcomings hinder the optimal design of highperformance devices.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC,Nos.21901138,21790361 and 22122503)the Shandong Provincial Natural Science Foundation(No.ZR2019ZD50)China Fundamental Research Funds for the Central Universities(No.2-9-2020-041).
文摘The key building blocks,tetrachlorinated terrylene diimides and the targeted sila-annulated terrylene diimides(Si-TDIs and 2Si-TDIs)were synthesized for the first time.Single-crystal analysis verified the almost planar molecular configurations of both Si-TDIs and 2Si-TDIs.They exhibited intriguing optical properties including red-shifted absorption and near-infrared emission properties with excellent fluorescence quantum yields,as well as precisely controlled HOMO/LUMO energy levels by Si-heteroannulation.The single-crystal organic field-effect transistors based on 2Si-TDI 5a featuring long and branched alkyl chains demonstrated well-balanced ambipolar transporting properties with electron/hole mobilities of 0.10/0.18 cm2 V^(−1)s^(−1).
基金financially supported by the National Natural Science Foundation of China (Nos. 21925501, 22175004 and 22020102001)the Beijing National Laboratory for Molecular Sciences (No. BNLMS-CXXM-201902)
文摘Donor-acceptor(D-A)conjugated polymers comprising electron-deficient aromatic dicarboximide units represent an important type of organic semiconductors,especially for electron transporting properties.Pyrene-1,5,6,10-tetracarboxyl diimide(PyDI),a new PAH dicarboximide molecule recently reported by us,provides a fine balance between the electron-stabilizing ability andπ-stacking tendency,as compared to the naphthalenediimide(NDI)and perylenediimide(PDI)analogues.In this study,using thienylene-vinylene-thienylene(TVT)and biselenophene(BS)as the electron donating comonomer,along with PyDI as the acceptor moiety,we develop two new D-A type conjugated polymers,which exhibit impressive electron-transporting performance.Specifically,in the solution-processed OFET devices,electron mobility of 0.18 and 0.20 cm^(2)·V^(−1)·s^(−1) are achieved with these polymers,respectively.Such findings further prove the optimal potential of PyDI for application as an electron-acceptor building block in the development of polymeric n-type semiconductors among all various high-performance functional D-A polymers.