Let SI and S2 be two (k- 1)-subsets in a k-uniform hypergraph H. We call S1 and S2 strongly or middle or weakly independent if H does not contain an edge e ∈ E(H) such that S1 ∩ e≠ 0 and S2 ∩ e ≠0 or e S1 ∪...Let SI and S2 be two (k- 1)-subsets in a k-uniform hypergraph H. We call S1 and S2 strongly or middle or weakly independent if H does not contain an edge e ∈ E(H) such that S1 ∩ e≠ 0 and S2 ∩ e ≠0 or e S1 ∪ S2 or e S1 ∪ S2, respectively. In this paper, we obtain the following results concerning these three independence. (1) For any n ≥ 2k2 - k and k ≥ 3, there exists an n-vertex k-uniform hypergraph, which has degree sum of any two strongly independent (k - 1)-sets equal to 2n - 4(k - 1), contains no perfect matching; (2) Let d ≥ 1 be an integer and H be a k-uniform hypergraph of order n ≥ kd+ (k- 2)k. If the degree sum of any two middle independent (k- 1)-subsets is larger than 2(d- 1), then H contains a d-matching; (3) For all k ≥ 3 and sufficiently large n divisible by k, we completely determine the minimum degree sum of two weakly independent (k - 1)-subsets that ensures a perfect matching in a k-uniform hypergraph H of order n.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11771247)
文摘Let SI and S2 be two (k- 1)-subsets in a k-uniform hypergraph H. We call S1 and S2 strongly or middle or weakly independent if H does not contain an edge e ∈ E(H) such that S1 ∩ e≠ 0 and S2 ∩ e ≠0 or e S1 ∪ S2 or e S1 ∪ S2, respectively. In this paper, we obtain the following results concerning these three independence. (1) For any n ≥ 2k2 - k and k ≥ 3, there exists an n-vertex k-uniform hypergraph, which has degree sum of any two strongly independent (k - 1)-sets equal to 2n - 4(k - 1), contains no perfect matching; (2) Let d ≥ 1 be an integer and H be a k-uniform hypergraph of order n ≥ kd+ (k- 2)k. If the degree sum of any two middle independent (k- 1)-subsets is larger than 2(d- 1), then H contains a d-matching; (3) For all k ≥ 3 and sufficiently large n divisible by k, we completely determine the minimum degree sum of two weakly independent (k - 1)-subsets that ensures a perfect matching in a k-uniform hypergraph H of order n.