The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less...The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.展开更多
The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host ...The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.展开更多
The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and ...The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.展开更多
Based on petrological studies of the wall rocks, mineralizing rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that along with the development of silication, carbonation and sulfidation, a kin...Based on petrological studies of the wall rocks, mineralizing rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that along with the development of silication, carbonation and sulfidation, a kind of black opaque ultra-microlite material runs through the spaces between grains, fissures and cleavages. Under observations of the electron microprobe, scanning electronic microscopy and energy spectrum, this kind of ultra-microlite material is confirmed to consist of ultra microcrystalline quartz, silicate, sulfides and carbonates, as well as rutile, scheelite and specularite (magnetite), showing characters of liquation by the analyses of SEM and energy spectrum. The coexistence of immiscibility and precipitating co-crystallization strongly suggests that the mineralizing fluid changed from the melt to the hydrothermal fluid. Combined with the element geochemical researches, it is realized that the ultra-microlite aggregate is the direct relics of the mantle fluid behaving like a melt and supercritical fluid, which goes along with the mantle-derived magma and will escape from the magma body at a proper time. During the alteration process, the nature of the mantle fluid changed and it is mixed with the crustal fluid, which are favorable for mineralization in the Loawangzhai gold deposit.展开更多
Dynamic equations controlling the thermally-driven fluid convection in a single rock crack are established in the paper . The critical criteria for the onset of convection in such a configuration are found by linear d...Dynamic equations controlling the thermally-driven fluid convection in a single rock crack are established in the paper . The critical criteria for the onset of convection in such a configuration are found by linear dynamic analysis of the equations and the stability of the convection discussed by nonlinear analysis method . The research demonstrates that the critical Rayleigh number has a magnitude 103. While the Rayleigh number R of real ore-forming fluids exceeds this value , the convection happens , and as R becomes larger , the fluid convection pattern develops from nonequilibrium steady states to double-periodically produced limit cycles and eventually to chaos (turbulences ).The implication of these dynamic analyses for the ore-forming processes of late-magma tic hydrothermal deposits is also discussed in the paper .展开更多
The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis ...The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.展开更多
The Yinshan deposit, one of the large-scale Cu-Pb-Zn-An-Ag polytnetallic deposits, may be named a middle-low temperature subvolcanic hydrothermal deposit and referredto as the "transitional deposit" linking ...The Yinshan deposit, one of the large-scale Cu-Pb-Zn-An-Ag polytnetallic deposits, may be named a middle-low temperature subvolcanic hydrothermal deposit and referredto as the "transitional deposit" linking mineralization of the epithermal and porphyry coppertypes. In this paper, the characteristics and structures of ore zoning are briefly described. Onthe basis of the dynamics of ore-forming processes and applying computer numerical simulationtechnique, the mechanism of ore zoning is discussed and a concealed igneous body controllingore deposition at depth of the Yinshan mine is predicted.展开更多
Based on the research content and conception of dynamics of tectonic ore-forming processes, with the focus on the dynamics and processes of mineral source, ore formation, transport, accumulation, dissipation and miner...Based on the research content and conception of dynamics of tectonic ore-forming processes, with the focus on the dynamics and processes of mineral source, ore formation, transport, accumulation, dissipation and mineralization in response to magmatic invasion and metallogenic fluid under tectonic stress, this paper deals with the ore-finding method of fault tectono-geochemistry and its application on the basis of ore deposit genesis, "giant pressure shadow" structure and ore-finding method of tectonic stress field in the Tongchang orefield, expounds the rules of magmatic emplacement and ore fluid migration and concentration under the control of the structural stress field, hence providing the theoretical basis for the localization and prognosis of concealed ores. The fault tectono-geochemical features show that the Cu-Au polymetallic ore deposits (mineralization) in the orefield are closely related with volcano-(exhalation) sedimentation, magmatism and tectono-reworking. Fault tectono-geochemical anomalies can be applied to prognosis of metallogenetic target areas for ore exploration and can provide strong evidence of "giant pressure shadow" structure. In addition, quite a number of important target areas have been defined in combination with the characteristics of the tectonic stress field, and part of the target areas have been proved by practical activities.展开更多
The Tongchang orefield is located in the central part of the Mianxian-Lueyang-Yangpingguan area that is celebrated as a 'gold triangle' area,at the juncture of the latitudinal tectonic zone of South Qinling,th...The Tongchang orefield is located in the central part of the Mianxian-Lueyang-Yangpingguan area that is celebrated as a 'gold triangle' area,at the juncture of the latitudinal tectonic zone of South Qinling,the Longmenshan Cathysian tectonic zone and the Sichuan-Yunnan longitudinal tectonic zone,where there are distributed Cu-Au polymetallic ore deposits(occurrences) including the Tongchang,Chenjiaba,Qinjiabian,Hongtushi,Yinshangou and Xiakouyi ore deposits(mineralization).Based on the "giant pressure shadow" structure put forward and demonstrated by numerical modeling of the tectonic stress field and the static photoelasticity experiments on the basis of tectonic ore-controlling laws in the orefield,tectonic metallogenesis driven by orefield tectonic stress has been discussed in terms of its geological setting,orefield geomechanics,and tectonic stress field.It is thought that the dynamic evolution model of the tectonic stress field controls the whole process of formation of the polymetallic ore deposits(mineralization) in the orefield,as well as the deformation field.As a result,it controls the emplacement of rockbodies and the transformation of ore-source bodies,and provides both the channel-ways for ore-forming fluids and ore-hosting space.Furthermore,it controls the migration potential field of fluids and,thereafter,its flow direction,rate and volume;the tectonic stress field also controls the energy field and hence controls the position of occurrence of ore deposits and their scale.The method of tectonic stress field has been applied to ore prognosis in the orefield.The rules of magmatic emplacement and metallogenic fluid migrating and concentrating under the control of the structural stress field were expounded,hence providing the theoretical basis for the prognosis of concealed ores.In addition,a number of important target areas have been defined.展开更多
The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed ...The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.展开更多
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a miner...Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a mineral with coexisting rock-forming minerals leads to particular geochemical be-havior. The concept of solubility of a metallic mineral with coexisting rock-forming minerals and its theory and model of calculation are put forward. Taking Tianmashan Cu-Au ore deposit of sulfide minerals in Tongling district as an example, solubilities of some metallic minerals with other coex-isting minerals, such as pyrite or chalcopyrite with quartz (representing sandstone) or calcite (rep-resenting limestone), are calculated. The results show the mechanism of ore-forming processes. As the ore-forming fluid flows through sandstone, it dissolves pyrite in the sandstone at first, then transports the iron and sulfur to the interface between sandstone and limestone and eventually precipitates them on the interface.展开更多
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w...Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including...Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.展开更多
The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the...The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the subsequent seismic activity and seismogenic tectonic research.Based on local strong-motion data,we used the IDS(Iterative Deconvolution and Stacking)method to obtain the rupture process of the mainshock and two strong aftershocks on the 23rd.The rupture of the mainshock was mainly unilateral,lasting 31 s,with a maximum slip of 2m,and the depth of the large slip zone is about 41–49 km.There is a clear difference between the rupture depth of the main shock and the two strong aftershocks.The depths of the large slip zones of the latter two are 3–9 km and 8–10 km,respectively.There is also a significant difference in the seismogenic fault between the mainshock and the aftershocks,and we believe that there are two seismogenic fault zones in the study area,the deep and the shallow fault zone.The slip of the deep faults activates the shallow faults.展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of prec...Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.展开更多
基金financially supported by the State Basic Research Plan(973 project)(No.2011CB403100)IGCP/SIDA-600 project
文摘The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.
基金funded by the third subject of National Natural Science Foundation of China(41302060)Geological Survey Project(12120114001304,121201004000150012)
文摘The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.
基金MGMR Eighth Five- Year Plan Basic Geology Research Foundation Grant 8502216China National Natural Science Foundation Grant 49173169
文摘The skarn and ore bodies of the stratabound skarn copper deposits of Tongling, Anhui Province, are both controlled by definite stratigraphic horizons, and they are concordant with the strata. They occur as layers and layer-like bodies in permeable carbonate rocks of the Middle-Upper Carboniferous Huanglong and Chuanshan Formations which are underlain by impermeable shale or siliceous rocks of the Upper Devonian Wutong Formation. The authors study the dynamics of ore-forming processes of the ore deposits with the dynamic model of coupled transport and reaction, and the following results are obtained: The salinity gradient and flow rate of the ore-forming fluids can both promote the mixing and reaction of juvenile water and formation water, and the permeable strata are favourable sites for the intense transport-reaction of mixing and the formation of deposits. (2) As isothermal transport-reaction took place along the bedding of strata, the moving transport-reaction front formed at the contact between the ore-forming fluids and the rocks advanced slowly along the permeable strata, and then stratiform skarn and ore bodies concordant with the strata were formed. (3) The gradient transport-reaction taking place across the isotherms in the cross-bedding direction caused the mineralogical composition to alter gradually from magnesian skarn to sulphide ore bodies.
基金supported by the National Natural Science Foundation of China (Grants No. 40473027 and 40773031)the Foundation of Doctoral Supported by the Ministry of Education (20105122110010 and 20115122110005)+1 种基金the Foundation of Open Subjects of State Key Laboratory for Mineral Deposits Research,Nanjing University (14-08-3)the Project of the State Key(Preparation Support) Disciplines of Mineralogy,Petrology and Mineral Deposit Geology of Sichuan Province (SZD0407)
文摘Based on petrological studies of the wall rocks, mineralizing rocks, ores and veins from the Laowangzhai gold deposit, it is discovered that along with the development of silication, carbonation and sulfidation, a kind of black opaque ultra-microlite material runs through the spaces between grains, fissures and cleavages. Under observations of the electron microprobe, scanning electronic microscopy and energy spectrum, this kind of ultra-microlite material is confirmed to consist of ultra microcrystalline quartz, silicate, sulfides and carbonates, as well as rutile, scheelite and specularite (magnetite), showing characters of liquation by the analyses of SEM and energy spectrum. The coexistence of immiscibility and precipitating co-crystallization strongly suggests that the mineralizing fluid changed from the melt to the hydrothermal fluid. Combined with the element geochemical researches, it is realized that the ultra-microlite aggregate is the direct relics of the mantle fluid behaving like a melt and supercritical fluid, which goes along with the mantle-derived magma and will escape from the magma body at a proper time. During the alteration process, the nature of the mantle fluid changed and it is mixed with the crustal fluid, which are favorable for mineralization in the Loawangzhai gold deposit.
文摘Dynamic equations controlling the thermally-driven fluid convection in a single rock crack are established in the paper . The critical criteria for the onset of convection in such a configuration are found by linear dynamic analysis of the equations and the stability of the convection discussed by nonlinear analysis method . The research demonstrates that the critical Rayleigh number has a magnitude 103. While the Rayleigh number R of real ore-forming fluids exceeds this value , the convection happens , and as R becomes larger , the fluid convection pattern develops from nonequilibrium steady states to double-periodically produced limit cycles and eventually to chaos (turbulences ).The implication of these dynamic analyses for the ore-forming processes of late-magma tic hydrothermal deposits is also discussed in the paper .
基金This research was supported by the Chinese Foundation for Development of Geological Science and Technology (Project 49273162)the National Natural Science Foundation of China(Project 49273162)
文摘The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.
文摘The Yinshan deposit, one of the large-scale Cu-Pb-Zn-An-Ag polytnetallic deposits, may be named a middle-low temperature subvolcanic hydrothermal deposit and referredto as the "transitional deposit" linking mineralization of the epithermal and porphyry coppertypes. In this paper, the characteristics and structures of ore zoning are briefly described. Onthe basis of the dynamics of ore-forming processes and applying computer numerical simulationtechnique, the mechanism of ore zoning is discussed and a concealed igneous body controllingore deposition at depth of the Yinshan mine is predicted.
基金This research project was granted jointly by the Funds for Program for NSF (40863002)NCET in University (NCET-04-917)the Project for the Distinguishing Discipline of KUST (2008)
文摘Based on the research content and conception of dynamics of tectonic ore-forming processes, with the focus on the dynamics and processes of mineral source, ore formation, transport, accumulation, dissipation and mineralization in response to magmatic invasion and metallogenic fluid under tectonic stress, this paper deals with the ore-finding method of fault tectono-geochemistry and its application on the basis of ore deposit genesis, "giant pressure shadow" structure and ore-finding method of tectonic stress field in the Tongchang orefield, expounds the rules of magmatic emplacement and ore fluid migration and concentration under the control of the structural stress field, hence providing the theoretical basis for the localization and prognosis of concealed ores. The fault tectono-geochemical features show that the Cu-Au polymetallic ore deposits (mineralization) in the orefield are closely related with volcano-(exhalation) sedimentation, magmatism and tectono-reworking. Fault tectono-geochemical anomalies can be applied to prognosis of metallogenetic target areas for ore exploration and can provide strong evidence of "giant pressure shadow" structure. In addition, quite a number of important target areas have been defined in combination with the characteristics of the tectonic stress field, and part of the target areas have been proved by practical activities.
基金Granted jointly by the Funds for Program for NCET in University (NCET-04-917)NSF (40863002)Project for the Distinguishing Discipline of KUST (2008)
文摘The Tongchang orefield is located in the central part of the Mianxian-Lueyang-Yangpingguan area that is celebrated as a 'gold triangle' area,at the juncture of the latitudinal tectonic zone of South Qinling,the Longmenshan Cathysian tectonic zone and the Sichuan-Yunnan longitudinal tectonic zone,where there are distributed Cu-Au polymetallic ore deposits(occurrences) including the Tongchang,Chenjiaba,Qinjiabian,Hongtushi,Yinshangou and Xiakouyi ore deposits(mineralization).Based on the "giant pressure shadow" structure put forward and demonstrated by numerical modeling of the tectonic stress field and the static photoelasticity experiments on the basis of tectonic ore-controlling laws in the orefield,tectonic metallogenesis driven by orefield tectonic stress has been discussed in terms of its geological setting,orefield geomechanics,and tectonic stress field.It is thought that the dynamic evolution model of the tectonic stress field controls the whole process of formation of the polymetallic ore deposits(mineralization) in the orefield,as well as the deformation field.As a result,it controls the emplacement of rockbodies and the transformation of ore-source bodies,and provides both the channel-ways for ore-forming fluids and ore-hosting space.Furthermore,it controls the migration potential field of fluids and,thereafter,its flow direction,rate and volume;the tectonic stress field also controls the energy field and hence controls the position of occurrence of ore deposits and their scale.The method of tectonic stress field has been applied to ore prognosis in the orefield.The rules of magmatic emplacement and metallogenic fluid migrating and concentrating under the control of the structural stress field were expounded,hence providing the theoretical basis for the prognosis of concealed ores.In addition,a number of important target areas have been defined.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41172085 & 41472066)the Scientific Project of China Geological Survey (Grant No. 12120114028401)
文摘The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
基金NFSC (Grant No. 4933120) and State Key Project (Grant No. 95-Y-39).
文摘Most metallic minerals in ore deposits are sulfides. When a sulfide mineral coexists with rock-forming minerals, its solubility is distinctly different from itself alone. The change in dissolution character of a mineral with coexisting rock-forming minerals leads to particular geochemical be-havior. The concept of solubility of a metallic mineral with coexisting rock-forming minerals and its theory and model of calculation are put forward. Taking Tianmashan Cu-Au ore deposit of sulfide minerals in Tongling district as an example, solubilities of some metallic minerals with other coex-isting minerals, such as pyrite or chalcopyrite with quartz (representing sandstone) or calcite (rep-resenting limestone), are calculated. The results show the mechanism of ore-forming processes. As the ore-forming fluid flows through sandstone, it dissolves pyrite in the sandstone at first, then transports the iron and sulfur to the interface between sandstone and limestone and eventually precipitates them on the interface.
基金funded by CONAHCYT grant(252808)to GFCONAHCYT’s“Estancias Posdoctorales por México”program(662350)to HTB。
文摘Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金supported by the National Natural Science Foundation of China(Nos.22206050 and 52270047).
文摘Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
基金sponsored by the Earthquake Spark Technology Project(XH23051B)。
文摘The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the subsequent seismic activity and seismogenic tectonic research.Based on local strong-motion data,we used the IDS(Iterative Deconvolution and Stacking)method to obtain the rupture process of the mainshock and two strong aftershocks on the 23rd.The rupture of the mainshock was mainly unilateral,lasting 31 s,with a maximum slip of 2m,and the depth of the large slip zone is about 41–49 km.There is a clear difference between the rupture depth of the main shock and the two strong aftershocks.The depths of the large slip zones of the latter two are 3–9 km and 8–10 km,respectively.There is also a significant difference in the seismogenic fault between the mainshock and the aftershocks,and we believe that there are two seismogenic fault zones in the study area,the deep and the shallow fault zone.The slip of the deep faults activates the shallow faults.
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.
文摘Purpose–The precast concrete slab track(PST)has advantages of fewer maintenance frequencies,better smooth rides and structural stability,which has been widely applied in urban rail transit.Precise positioning of precast concrete slab(PCS)is vital for keeping the initial track regularity.However,the cast-in-place process of the self-compacting concrete(SCC)filling layer generally causes a large deformation of PCS due to the water-hammer effect of flowing SCC,even cracking of PCS.Currently,the buoyancy characteristic and influencing factors of PCS during the SCC casting process have not been thoroughly studied in urban rail transit.Design/methodology/approach–In this work,a Computational Fluid Dynamics(CFD)model is established to calculate the buoyancy of PCS caused by the flowing SCC.The main influencing factors,including the inlet speed and flowability of SCC,have been analyzed and discussed.A new structural optimization scheme has been proposed for PST to reduce the buoyancy caused by the flowing SCC.Findings–The simulation and field test results showed that the buoyancy and deformation of PCS decreased obviously after adopting the new scheme.Originality/value–The findings of this study can provide guidance for the control of the deformation of PCS during the SCC construction process.