Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-med...Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.展开更多
In this paper, A Belief Propagation concatenated Orderd-Statistic Decoder (BP-OSD) based on accumulated Log-Likelihood Ratio (LLR) is proposed for medium and short lengths Low Density Parity-Check (LDPC) codes coded B...In this paper, A Belief Propagation concatenated Orderd-Statistic Decoder (BP-OSD) based on accumulated Log-Likelihood Ratio (LLR) is proposed for medium and short lengths Low Density Parity-Check (LDPC) codes coded Bit-Interleaved Coded Modulation (BICM) systems. The accumulated soft output values delivered by every BP iteration are used as reliability values of Soft-Input Soft-Output OSD (SISO-OSD) decoder and the soft output of SISO-OSD is used as a priori probabilities of the demodulator for the next iteration. Simulation results show that this improved algorithm achieves noticeable performance gain with only modest increase in computation complexity.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)with project ID 62071498the Guangdong National Science Foundation(GDNSF)with project ID 2024A1515010213.
文摘Constituted by BCH component codes and its ordered statistics decoding(OSD),the successive cancellation list(SCL)decoding of U-UV structural codes can provide competent error-correction performance in the short-to-medium length regime.However,this list decoding complexity becomes formidable as the decoding output list size increases.This is primarily incurred by the OSD.Addressing this challenge,this paper proposes the low complexity SCL decoding through reducing the complexity of component code decoding,and pruning the redundant SCL decoding paths.For the former,an efficient skipping rule is introduced for the OSD so that the higher order decoding can be skipped when they are not possible to provide a more likely codeword candidate.It is further extended to the OSD variant,the box-andmatch algorithm(BMA),in facilitating the component code decoding.Moreover,through estimating the correlation distance lower bounds(CDLBs)of the component code decoding outputs,a path pruning(PP)-SCL decoding is proposed to further facilitate the decoding of U-UV codes.In particular,its integration with the improved OSD and BMA is discussed.Simulation results show that significant complexity reduction can be achieved.Consequently,the U-UV codes can outperform the cyclic redundancy check(CRC)-polar codes with a similar decoding complexity.
基金Supported by the National Natural Science Foundation of China (No: 60496311)
文摘In this paper, A Belief Propagation concatenated Orderd-Statistic Decoder (BP-OSD) based on accumulated Log-Likelihood Ratio (LLR) is proposed for medium and short lengths Low Density Parity-Check (LDPC) codes coded Bit-Interleaved Coded Modulation (BICM) systems. The accumulated soft output values delivered by every BP iteration are used as reliability values of Soft-Input Soft-Output OSD (SISO-OSD) decoder and the soft output of SISO-OSD is used as a priori probabilities of the demodulator for the next iteration. Simulation results show that this improved algorithm achieves noticeable performance gain with only modest increase in computation complexity.