Considering both the discrete and ordered nature of the household car ownership an ordered logistic regression model to predict household car ownership is established by using the data of Nanjing Household Travel Surv...Considering both the discrete and ordered nature of the household car ownership an ordered logistic regression model to predict household car ownership is established by using the data of Nanjing Household Travel Survey in the year 2012. The model results show that some household characteristics such as the number of driver licenses household income and home location are significant.Yet the intersection density indicating the street patterns of home location and the dummy near the subway and the bus stop density indicating the transit accessibility of home location are insignificant.The model estimation obtains a good γ2 the goodness of fit of the model and the model validation also shows a good performance in prediction.The marginal effects of all the significant explanatory variables are calculated to quantify the odds change in the household car ownership following a one-unit change in the explanatory variables.展开更多
At present, there are significant regional differences in average life expectancy among countries in the world. Not only is there a great disparity in average life expectancy, but also the gender difference is positiv...At present, there are significant regional differences in average life expectancy among countries in the world. Not only is there a great disparity in average life expectancy, but also the gender difference is positive and negative, and is distributed in a bipolar distribution of “long life in rich countries and short life in poor countries”. This paper analyzes the factors affecting the life grade by using the ordered multivariate discrete selection model and combined with the average life expectancy data of countries all over the world in 2017. The test results show that: 1) The growth of per capita GDP, elderly dependency ratio and the proportion of people using at least basic drinking water services can effectively improve the level of life expectancy;2) The birth rate has an inhibitory effect on the average life expectancy;3) Through model comparison, probit model is more suitable for the analysis of this kind of problems than logit model, and the properties of the obtained model are better.展开更多
This paper proposes a new element-based multi-material topology optimization algorithm using a single variable for minimizing compliance subject to a mass constraint.A single variable based on the normalized elemental...This paper proposes a new element-based multi-material topology optimization algorithm using a single variable for minimizing compliance subject to a mass constraint.A single variable based on the normalized elemental density is used to overcome the occurrence of meaningless design variables and save computational cost.Different from the traditional material penalization scheme,the algorithm is established on the ordered ersatz material model,which linearly interpolates Young’s modulus for relaxed design variables.To achieve a multi-material design,the multiple floating projection constraints are adopted to gradually push elemental design variables to multiple discrete values.For the convergent element-based solution,the multiple level-set functions are constructed to tentatively extract the smooth interface between two adjacent materials.Some 2D and 3D numerical examples are presented to demonstrate the effectiveness of the proposed algorithm and the possible advantage of the multi-material designs over the traditional solid-void designs.展开更多
To enhance the prediction accuracy of unsteady wakes behind wind turbines,a novel reduced-order model is proposed by integrating a multifunctional recurrent fuzzy neural network(MFRFNN)and proper orthogonal decom-posi...To enhance the prediction accuracy of unsteady wakes behind wind turbines,a novel reduced-order model is proposed by integrating a multifunctional recurrent fuzzy neural network(MFRFNN)and proper orthogonal decom-position(POD).First,POD is employed to reduce the di-mensionality of the wind field data,extracting spatiotempo-rally correlated modal coefficients and modes.These reduced-order variables can effectively capture the essential features of unsteady wake behaviors.Next,MFRFNN is utilized to predict the time series of modal coefficients.Fi-nally,by combining the predicted modal coefficients with their corresponding modes,a flow field is reconstructed,al-lowing accurate prediction of unsteady wake dynamics.The predicted wake data exhibit high consistency with large eddy simulation results in both the near-and far-wake re-gions and outperform existing data-driven methods.This ap-proach offers significant potential for optimizing wind farm design and provides a new solution for the precise prediction of wind turbine wake behavior.展开更多
High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of ...High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).展开更多
Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aim...Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu- tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody- namic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD- Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.展开更多
This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and ...This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.展开更多
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow confi...Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.展开更多
Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performa...Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure.展开更多
State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have p...State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.展开更多
Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low orde...Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.展开更多
To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and...To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and the raw data matrix, whichare consistent with the fractional order accumulative grey model(FAGM (1,1)). Following this, this paper decomposes the accumulativedata difference matrix into the accumulative generationmatrix, the q-order reductive accumulative matrix and the rawdata matrix, and then combines the least square method, findingthat the differential order affects the model parameters only byaffecting the formation of differential sequences. This paper thensummarizes matrix decomposition of some special sequences,such as the sequence generated by the strengthening and weakeningoperators, the jumping sequence, and the non-equidistancesequence. Finally, this paper expresses the influences of the rawdata transformation, the accumulation sequence transformation,and the differential matrix transformation on the model parametersas matrices, and takes the non-equidistance sequence as an exampleto show the modeling mechanism.展开更多
In recent years,the Active Flutter Suppression(AFS)employing Linear ParameterVarying(LPV)framework has become a hot spot in the research field.Nevertheless,the flutter suppression technique is facing two severe challe...In recent years,the Active Flutter Suppression(AFS)employing Linear ParameterVarying(LPV)framework has become a hot spot in the research field.Nevertheless,the flutter suppression technique is facing two severe challenges.On the one hand,due to the fatal risk of flight test near critical airspeed,it is hard to obtain the accurate mathematical model of the aeroelastic system from the testing data.On the other hand,saturation of the actuator may degrade the closed-loop performance,which was often neglected in the past work.To tackle these two problems,a new active controller design procedure is proposed to suppress flutter in this paper.Firstly,with the aid of LPV model order reduction method and State-space Model Interpolation of Local Estimates(SMILE)technique,a set of high-fidelity Linear Time-Invariant(LTI)models which are usually derived from flight tests at different subcritical airspeeds are reduced and interpolated to construct an LPV model of an aeroelastic system.And then,the unstable aeroelastic dynamics beyond critical airspeed are‘predicted’by extrapolating the resulting LPV model.Secondly,based on the control-oriented LPV model,an AFS controller in LPV framework which is composed of a nominal LPV controller and an LPV anti-windup compensator is designed to suppress the aeroelastic vibration and overcome the performance degradation caused by actuator saturation.Although the nominal LPV controller may have superior performance in linear simulation in which the saturation effect is ignored,the results of the numerical simulations show that the nominal LPV controller fails to suppress the Body Freedom Flutter(BFF)when encountering the actuator saturation.However,the LPV anti-windup compensator not only enhances the nominal controller’s performance but also helps the nominal controller to stabilize the unstable aeroelastic system whenencountering serious actuator saturation.展开更多
Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a rea...Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural.展开更多
This paper discusses a physics-informed methodology aimed at reconstructing efficiently the fluid state of a system.Herein,the generation of an accurate reduced order model of twodimensional unsteady flows from data l...This paper discusses a physics-informed methodology aimed at reconstructing efficiently the fluid state of a system.Herein,the generation of an accurate reduced order model of twodimensional unsteady flows from data leverages on sparsity-promoting statistical learning techniques.The cornerstone of the approach is l_(1) regularised regression,resulting in sparselyconnected models where only the important quadratic interactions between modes are retained.The original dynamical behaviour is reproduced at low computational costs,as few quadratic interactions need to be evaluated.The approach has two key features.First,interactions are selected systematically as a solution of a convex optimisation problem and no a priori assumptions on the physics of the flow are required.Second,the presence of a regularisation term improves the predictive performance of the original model,generally affected by noise and poor data quality.Test cases are for two-dimensional lid-driven cavity flows,at three values of the Reynolds number for which the motion is chaotic and energy interactions are scattered across the spectrum.It is found that:(A)the sparsification generates models maintaining the original accuracy level but with a lower number of active coefficients;this becomes more pronounced for increasing Reynolds numbers suggesting that extension of these techniques to real-life flow configurations is possible;(B)sparse models maintain a good temporal stability for predictions.The methodology is ready for more complex applications without modifications of the underlying theory,and the integration into a cyberphysical model is feasible.展开更多
A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined wi...A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined with a set of Aerodynamic Influence Coefficients(AIC).Subsequently,the aerodynamic model is encoded into the state space and then coupled with the structural dynamic equations,resulting in a ROM of the cascade aeroelasticity.The cascade flutter can be determined by solving the eigenvalues of the ROM.Bending-torsional coupled mode flutter analysis for the Standard Configuration Eleven(SC11)cascade is used to validate the proposed method.展开更多
A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as void...A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as voids. The two surfaces separately account for slip and twinning such that the constitutive formulation captures the evolving plastic anisotropy and evolving tension-compression asymmetry. For model identification, a procedure is proposed whereby the initial guess is based on a combination of experimental data and computationally intensive polycrystal calculations from the literature. In drawing direct comparisons with crystal plasticity, of which the proposed model constitutes a heuristically derived reduced-order model, the available crystal plasticity simulations are grouped in two datasets. A calibration set contains minimal data for both pristine and porous material subjected to one loading path. Then the two-surface model is assessed against a broader set of crystal plasticity simulations for voided unit cells under various stress states and two loading orientations. The assessment also includes microstructure evolution(rate of growth of porosity and void distortion). The ability of the two-surface model to capture essential features of crystal plasticity is analyzed along with an evaluation of computational cost. The prospects of using the model in guiding the development of physically sound damage models in Mg alloys are put forth in the context of high-throughput simulations.展开更多
This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model g...This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface.展开更多
The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predic...The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter.This is a new approach,and,as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea,avoids the inaccuracies resulting from using a first order linear wave model in the simulation process.The predicted results have been systematically analyzed and compared,and the advantages of using this new approach have been convincingly substantiated.展开更多
In order to overcome the deficiency in classical method of low order spectral model, a new method for low order spectral model was advanced. Through calculating the multiple correlation coefficients between combinatio...In order to overcome the deficiency in classical method of low order spectral model, a new method for low order spectral model was advanced. Through calculating the multiple correlation coefficients between combinations of different functions and the recorded data under the least square criterion, the truncated functions which can mostly reflect the studied physical phenomenon were objectively distilled from these data. The new method overcomes the deficiency of artificially selecting the truncated functions in the classical low order spectral model. The new method being applied to study the inter-annual variation of summer atmospheric circulation over Northern Hemisphere, the truncated functions were obtained with the atmospheric circulation data of June 1994 and June 1998. The mechanisms for the two-summer atmospheric circulation variations over Northern Hemisphere were obtained with two-layer quasi-geostrophic baroclinic equation.展开更多
文摘Considering both the discrete and ordered nature of the household car ownership an ordered logistic regression model to predict household car ownership is established by using the data of Nanjing Household Travel Survey in the year 2012. The model results show that some household characteristics such as the number of driver licenses household income and home location are significant.Yet the intersection density indicating the street patterns of home location and the dummy near the subway and the bus stop density indicating the transit accessibility of home location are insignificant.The model estimation obtains a good γ2 the goodness of fit of the model and the model validation also shows a good performance in prediction.The marginal effects of all the significant explanatory variables are calculated to quantify the odds change in the household car ownership following a one-unit change in the explanatory variables.
文摘At present, there are significant regional differences in average life expectancy among countries in the world. Not only is there a great disparity in average life expectancy, but also the gender difference is positive and negative, and is distributed in a bipolar distribution of “long life in rich countries and short life in poor countries”. This paper analyzes the factors affecting the life grade by using the ordered multivariate discrete selection model and combined with the average life expectancy data of countries all over the world in 2017. The test results show that: 1) The growth of per capita GDP, elderly dependency ratio and the proportion of people using at least basic drinking water services can effectively improve the level of life expectancy;2) The birth rate has an inhibitory effect on the average life expectancy;3) Through model comparison, probit model is more suitable for the analysis of this kind of problems than logit model, and the properties of the obtained model are better.
基金This work was supported by Hunan Provincial Innovation Foundation for Postgraduate(CX20190278)FJUT Scientific Research Foundation(GY-Z17015)Open Fund of Fujian Key Laboratory of Automotive Electronics and Electric Drive(KF-X19001).
文摘This paper proposes a new element-based multi-material topology optimization algorithm using a single variable for minimizing compliance subject to a mass constraint.A single variable based on the normalized elemental density is used to overcome the occurrence of meaningless design variables and save computational cost.Different from the traditional material penalization scheme,the algorithm is established on the ordered ersatz material model,which linearly interpolates Young’s modulus for relaxed design variables.To achieve a multi-material design,the multiple floating projection constraints are adopted to gradually push elemental design variables to multiple discrete values.For the convergent element-based solution,the multiple level-set functions are constructed to tentatively extract the smooth interface between two adjacent materials.Some 2D and 3D numerical examples are presented to demonstrate the effectiveness of the proposed algorithm and the possible advantage of the multi-material designs over the traditional solid-void designs.
基金The National Natural Science Foundation of China (No. 51908107)。
文摘To enhance the prediction accuracy of unsteady wakes behind wind turbines,a novel reduced-order model is proposed by integrating a multifunctional recurrent fuzzy neural network(MFRFNN)and proper orthogonal decom-position(POD).First,POD is employed to reduce the di-mensionality of the wind field data,extracting spatiotempo-rally correlated modal coefficients and modes.These reduced-order variables can effectively capture the essential features of unsteady wake behaviors.Next,MFRFNN is utilized to predict the time series of modal coefficients.Fi-nally,by combining the predicted modal coefficients with their corresponding modes,a flow field is reconstructed,al-lowing accurate prediction of unsteady wake dynamics.The predicted wake data exhibit high consistency with large eddy simulation results in both the near-and far-wake re-gions and outperform existing data-driven methods.This ap-proach offers significant potential for optimizing wind farm design and provides a new solution for the precise prediction of wind turbine wake behavior.
文摘High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep).
基金supported by the National Natural Science Foundation of China (Nos. 11372036, 50875024)Excellent Young Scholars Research Fund of Beijing Institute of Technology of China (No. 2010Y0102)
文摘Aerothermoelasticity is one of the key technologies for hypersonic vehicles. Accurate and efficient computation of the aerothermodynamics is one of the primary challenges for hypersonic aerothermoelastic analysis. Aimed at solving the shortcomings of engineering calculation, compu- tation fluid dynamics (CFD) and experimental investigation, a reduced order modeling (ROM) framework for aerothermodynamics based on CFD predictions using an enhanced algorithm of fast maximin Latin hypercube design is developed. Both proper orthogonal decomposition (POD) and surrogate are considered and compared to construct ROMs. Two surrogate approaches named Kriging and optimized radial basis function (ORBF) are utilized to construct ROMs. Furthermore, an enhanced algorithm of fast maximin Latin hypercube design is proposed, which proves to be helpful to improve the precisions of ROMs. Test results for the three-dimensional aerothermody- namic over a hypersonic surface indicate that: the ROMs precision based on Kriging is better than that by ORBF, ROMs based on Kriging are marginally more accurate than ROMs based on POD- Kriging. In a word, the ROM framework for hypersonic aerothermodynamics has good precision and efficiency.
文摘This paper describes a method proposed for modeling large deflection of aircraft in nonlinear aeroelastic analysis by developing reduced order model(ROM).The method is applied for solving the static aeroelastic and static aeroelastic trim problems of flexible aircraft containing geometric nonlinearities;meanwhile,the non-planar effects of aerodynamics and follower force effect have been considered.ROMs are computational inexpensive mathematical representations compared to traditional nonlinear finite element method(FEM) especially in aeroelastic solutions.The approach for structure modeling presented here is on the basis of combined modal/finite element(MFE) method that characterizes the stiffness nonlinearities and we apply that structure modeling method as ROM to aeroelastic analysis.Moreover,the non-planar aerodynamic force is computed by the non-planar vortex lattice method(VLM).Structure and aerodynamics can be coupled with the surface spline method.The results show that both of the static aeroelastic analysis and trim analysis of aircraft based on structure ROM can achieve a good agreement compared to analysis based on the FEM and experimental result.
基金Supported by National Natural Science Foundation of China(Grant No.11372036)
文摘Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.
基金co-National Science and Technology Major Project(No.2017-II-0009-0023)Innovation Guidance Support Project for Taicang Top Research Institutes(No.TC2019DYDS09)。
文摘Based on Recursive Radial Basis Function(RRBF)neural network,the Reduced Order Model(ROM)of compressor cascade was established to meet the urgent demand of highly efficient prediction of unsteady aerodynamics performance of turbomachinery.One novel ROM called ASA-RRBF model based on Adaptive Simulated Annealing(ASA)algorithm was developed to enhance the generalization ability of the unsteady ROM.The ROM was verified by predicting the unsteady aerodynamics performance of a highly-loaded compressor cascade.The results show that the RRBF model has higher accuracy in identification of the dimensionless total pressure and dimensionless static pressure of compressor cascade under nonlinear and unsteady conditions,and the model behaves higher stability and computational efficiency.However,for the strong nonlinear characteristics of aerodynamic parameters,the RRBF model presents lower accuracy.Additionally,the RRBF model predicts with a large error in the identification of aerodynamic parameters under linear and unsteady conditions.For ASA-RRBF,by introducing a small-amplitude and highfrequency sinusoidal signal as validation sample,the width of the basis function of the RRBF model is optimized to improve the generalization ability of the ROM under linear unsteady conditions.Besides,this model improves the predicting accuracy of dimensionless static pressure which has strong nonlinear characteristics.The ASA-RRBF model has higher prediction accuracy than RRBF model without significantly increasing the total time consumption.This novel model can predict the linear hysteresis of dimensionless static pressure happened in the harmonic condition,but it cannot accurately predict the beat frequency of dimensionless total pressure.
基金Beijing Municipal Natural Science Foundation of China(Grant No.3182035)National Natural Science Foundation of China(Grant No.51877009).
文摘State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.
基金National Natural Science Foundation of China (10902082)New Faculty Research Foundation of XJTUthe Fundamental Research Funds for the Central Universities (xjj20100126)
文摘Active stability augmentation system is an attractive and promising technology to suppress flutter and limit cycle oscillation (LCO). In order to design a good active control law, the control plant model with low order and high accuracy must be provided, which is one of the most important key points. The traditional model is based on low fidelity aerodynamics model such as panel method, which is unsuitable for transonic flight regime. The physics-based high fidelity tools, reduced order model (ROM) and CFD/CSD coupled aeroservoelastic solver are used to design the active control law. The Volterra/ROM is applied to constructing the low order state space model for the nonlinear unsteady aerodynamics and static output feedback method is used to active control law design. The detail of the new method is demonstrated by the Goland+ wing/store system. The simulation results show that the effectiveness of the designed active augmentation system, which can suppress the flutter and LCO successfully.
基金supported by the National Natural Science Foundation of China(5147915151279149+2 种基金71540027)the China Postdoctoral Science Foundation Special Foundation Project(2013T607552012M521487)
文摘To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and the raw data matrix, whichare consistent with the fractional order accumulative grey model(FAGM (1,1)). Following this, this paper decomposes the accumulativedata difference matrix into the accumulative generationmatrix, the q-order reductive accumulative matrix and the rawdata matrix, and then combines the least square method, findingthat the differential order affects the model parameters only byaffecting the formation of differential sequences. This paper thensummarizes matrix decomposition of some special sequences,such as the sequence generated by the strengthening and weakeningoperators, the jumping sequence, and the non-equidistancesequence. Finally, this paper expresses the influences of the rawdata transformation, the accumulation sequence transformation,and the differential matrix transformation on the model parametersas matrices, and takes the non-equidistance sequence as an exampleto show the modeling mechanism.
基金the National Natural Science Foundation of China(No.61573289)Space Science and Technology Fund,and Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JM042)Fundamental Research Funds for the Central Universities of China(No.3102019ZDHKY11)。
文摘In recent years,the Active Flutter Suppression(AFS)employing Linear ParameterVarying(LPV)framework has become a hot spot in the research field.Nevertheless,the flutter suppression technique is facing two severe challenges.On the one hand,due to the fatal risk of flight test near critical airspeed,it is hard to obtain the accurate mathematical model of the aeroelastic system from the testing data.On the other hand,saturation of the actuator may degrade the closed-loop performance,which was often neglected in the past work.To tackle these two problems,a new active controller design procedure is proposed to suppress flutter in this paper.Firstly,with the aid of LPV model order reduction method and State-space Model Interpolation of Local Estimates(SMILE)technique,a set of high-fidelity Linear Time-Invariant(LTI)models which are usually derived from flight tests at different subcritical airspeeds are reduced and interpolated to construct an LPV model of an aeroelastic system.And then,the unstable aeroelastic dynamics beyond critical airspeed are‘predicted’by extrapolating the resulting LPV model.Secondly,based on the control-oriented LPV model,an AFS controller in LPV framework which is composed of a nominal LPV controller and an LPV anti-windup compensator is designed to suppress the aeroelastic vibration and overcome the performance degradation caused by actuator saturation.Although the nominal LPV controller may have superior performance in linear simulation in which the saturation effect is ignored,the results of the numerical simulations show that the nominal LPV controller fails to suppress the Body Freedom Flutter(BFF)when encountering the actuator saturation.However,the LPV anti-windup compensator not only enhances the nominal controller’s performance but also helps the nominal controller to stabilize the unstable aeroelastic system whenencountering serious actuator saturation.
基金supported,in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401in part,by the National Nature Science Foundation of China under Grant Numbers 61502240,61502096,61304205,61773219in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)fund.
文摘Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural.
文摘This paper discusses a physics-informed methodology aimed at reconstructing efficiently the fluid state of a system.Herein,the generation of an accurate reduced order model of twodimensional unsteady flows from data leverages on sparsity-promoting statistical learning techniques.The cornerstone of the approach is l_(1) regularised regression,resulting in sparselyconnected models where only the important quadratic interactions between modes are retained.The original dynamical behaviour is reproduced at low computational costs,as few quadratic interactions need to be evaluated.The approach has two key features.First,interactions are selected systematically as a solution of a convex optimisation problem and no a priori assumptions on the physics of the flow are required.Second,the presence of a regularisation term improves the predictive performance of the original model,generally affected by noise and poor data quality.Test cases are for two-dimensional lid-driven cavity flows,at three values of the Reynolds number for which the motion is chaotic and energy interactions are scattered across the spectrum.It is found that:(A)the sparsification generates models maintaining the original accuracy level but with a lower number of active coefficients;this becomes more pronounced for increasing Reynolds numbers suggesting that extension of these techniques to real-life flow configurations is possible;(B)sparse models maintain a good temporal stability for predictions.The methodology is ready for more complex applications without modifications of the underlying theory,and the integration into a cyberphysical model is feasible.
基金supported by the National Science and Technology Major Project, China (No. 2017-II-0009-0023)the Aeronautical Science Foundation of China(No. 2020Z039053004)the Fundamental Research Funds for the Central Universities, China (No. 3102019OQD701)
文摘A Reduced Order Model(ROM)based analysis method for turbomachinery cascade coupled mode flutter is presented in this paper.The unsteady aerodynamic model is established by a system identification technique combined with a set of Aerodynamic Influence Coefficients(AIC).Subsequently,the aerodynamic model is encoded into the state space and then coupled with the structural dynamic equations,resulting in a ROM of the cascade aeroelasticity.The cascade flutter can be determined by solving the eigenvalues of the ROM.Bending-torsional coupled mode flutter analysis for the Standard Configuration Eleven(SC11)cascade is used to validate the proposed method.
基金support of this work by the National Science Foundation (CMMI Award no.1932975)。
文摘A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as voids. The two surfaces separately account for slip and twinning such that the constitutive formulation captures the evolving plastic anisotropy and evolving tension-compression asymmetry. For model identification, a procedure is proposed whereby the initial guess is based on a combination of experimental data and computationally intensive polycrystal calculations from the literature. In drawing direct comparisons with crystal plasticity, of which the proposed model constitutes a heuristically derived reduced-order model, the available crystal plasticity simulations are grouped in two datasets. A calibration set contains minimal data for both pristine and porous material subjected to one loading path. Then the two-surface model is assessed against a broader set of crystal plasticity simulations for voided unit cells under various stress states and two loading orientations. The assessment also includes microstructure evolution(rate of growth of porosity and void distortion). The ability of the two-surface model to capture essential features of crystal plasticity is analyzed along with an evaluation of computational cost. The prospects of using the model in guiding the development of physically sound damage models in Mg alloys are put forth in the context of high-throughput simulations.
文摘This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface.
基金The National Natural Science Foundation of China under contract No.51979165。
文摘The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter.This is a new approach,and,as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea,avoids the inaccuracies resulting from using a first order linear wave model in the simulation process.The predicted results have been systematically analyzed and compared,and the advantages of using this new approach have been convincingly substantiated.
基金Project supported by the National Natural Science Foundation of China(No.40475040)the Major State Basic Development Program of China(No.2003CB415100)
文摘In order to overcome the deficiency in classical method of low order spectral model, a new method for low order spectral model was advanced. Through calculating the multiple correlation coefficients between combinations of different functions and the recorded data under the least square criterion, the truncated functions which can mostly reflect the studied physical phenomenon were objectively distilled from these data. The new method overcomes the deficiency of artificially selecting the truncated functions in the classical low order spectral model. The new method being applied to study the inter-annual variation of summer atmospheric circulation over Northern Hemisphere, the truncated functions were obtained with the atmospheric circulation data of June 1994 and June 1998. The mechanisms for the two-summer atmospheric circulation variations over Northern Hemisphere were obtained with two-layer quasi-geostrophic baroclinic equation.