期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Confined soft carbon in hard carbon with enhanced ion transport kinetics as anode for high-rate and stable potassium-ion batteries 被引量:3
1
作者 Yong Li Aoyang Zhu +5 位作者 Guodong Peng Jun He Hongqiang Li Dedong Jia Jieshan Qiu Xiaojun He 《Journal of Energy Chemistry》 2025年第4期97-105,共9页
Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon la... Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon lattice in hard carbon.Herein,confined pitch-based soft carbon in pollen-derived hard carbon(PSC/PHC)is synthesized by vapor deposition strategy as anodes for PIBs.The ordered pitch-based soft carbon compensates for the short-range electron conduction in hard carbon to enhance the charge transfer kinetics,and the externally disordered pollen-derived hard carbon alleviates the volume change of soft carbon during cycling.Benefiting from the synergistic effect of soft and hard carbon,as well as the reinforced structure of order-in-disordered carbon,the PSC/PHC obtained with deposition time of 0.5 h(PSC/PHC-0.5)displays an excellent rate capability(148.7 mAh g^(-1)at 10 A g^(-1))and superb cycling stability(70%retention over 2000 cycles at 1 A g^(-1)).This work offers a unique insight in tuning the microcrystalline structure of soft-hard carbon anode for advanced PIBs. 展开更多
关键词 Biomass-derived hard carbon Pitch-based soft carbon Microcrystalline regulation engineering order-in-disordered carbon Potassium-ion batteries
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部