After describing research status of super-structure for Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2,diffraction patterns of Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2 in different order parameters have been researched by Powder-cell pro...After describing research status of super-structure for Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2,diffraction patterns of Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2 in different order parameters have been researched by Powder-cell program,including crystal structure,X-ray and neutron diffraction pattern,anomalous diffraction pattern and comparison of NiCoMn in different positions. The influence of order parameters on intensity of matrix and super-lattice diffraction lines has also been analyzed and the summarization and prospect have been made lastly.展开更多
The Fe-Pt based intermetallic compounds exhibit good chemical stability and unique magnetic proper-ties,where Ni is an important additional element to optimize the magnetic properties or obtain the outstanding catalyt...The Fe-Pt based intermetallic compounds exhibit good chemical stability and unique magnetic proper-ties,where Ni is an important additional element to optimize the magnetic properties or obtain the outstanding catalytic performances of the Fe-Pt based alloys.Knowledge of how Ni addition affects the order-disorder transitions of the Fe-Pt intermetallics is thus necessary;however,the related information is limited.Therefore,in this work,the phase diagrams of the Fe-Ni-Pt system were experimentally in-vestigated,and as a result,the isothermal sections of the Fe-Ni-Pt system at 600 and 900℃,as well as the vertical sections of Fe_(80)Ni_(20)-Pt_(80)Ni_(20)and Fe_(50)Pt_(50)-Ni_(50)Pt_(50)were constructed.Based on these re-sults,the influences of Ni addition on the crystal stabilities and phase transformations of the ordered Fe-Pt intermetallics have been well described.The results show that the L1_(0)-FePt and L1_(0)-NiPt phases form a ternary continuous solid solution of L1_(0)-(Fe,Ni)Pt,whereas Ni can dissolve in the L1_(2)-Fe_(3)Pt and L1_(2)-FePt_(3)phases as high as 57.0 at.%and 26.0 at.%at 600℃,respectively.The selective occupancy of Ni atoms has been predicted,which should depend on the alloy composition.For both the L1_(0)-(Fe,Ni)Pt and L1_(2)-FePt_(3)phases,when Pt contents are less than their stoichiometric values,Ni atoms will preferentially occupy the Pt sublattice,forming as many nearest-neighbor Fe-Pt bonds as possible.All these results can correlate the alloy compositions,annealing temperatures and crystal structures to both magnetic and catalytic properties,thus providing a basis for optimizing the Fe-Ni-Pt alloys towards enhanced magnetic or catalytic performances.展开更多
Based on pair potential, the Bragg Williams (B-W) model is modified to takeinto account the effect of the lattice parameter on theoretical order-disorder transformationanalysis. The main purpose of this work is to und...Based on pair potential, the Bragg Williams (B-W) model is modified to takeinto account the effect of the lattice parameter on theoretical order-disorder transformationanalysis. The main purpose of this work is to understand the basic aspects of this effect andrelated reasonable model on order-disorder transformation. In the present approach, theconfiguration free energy is chosen as function of the lattice parameter and the long-range order.This energy is calculated through Taylor's expansion, starting from the disordered state. It wasfound that the configuration free energy has been strongly modified when the lattice parameter istaken into account. It was also found only one type of order-disorder transformation exists in ABalloy and three kinds of order-disorder transformations for non-equiatomic alloy system such as A_3Balloy. This result is in agreement with experiments.展开更多
The embedded atom method (EAM) was used to theoretically analyze the effect of the lattice parameter variation on the order-disorder transformation in binary alloys. Based on EAM, it is found that only one kind of ord...The embedded atom method (EAM) was used to theoretically analyze the effect of the lattice parameter variation on the order-disorder transformation in binary alloys. Based on EAM, it is found that only one kind of order-disorder transition (second-order transition) exists for AB alloy. Three groups of order-disorder transformation can be observed for the A(3)B or AB(3) compounds. For group I, the order-disorder is a completely first-order transition. For group II, the order-disorder transformation is a classical first-order transition. For group III, the order-disorder transformation is found to be a second-order transition. The lattice parameter variations have a significant effect on E-2 coefficient, which is related to the ordering energy. These results are in good agreement with experiments.展开更多
The embedded atom method (EAM) was used to study the order-disorder transformation in gamma -TiAl alloy with L1(0). structure at stoichiometrical composition, and the effect of lattice constants was also investigated....The embedded atom method (EAM) was used to study the order-disorder transformation in gamma -TiAl alloy with L1(0). structure at stoichiometrical composition, and the effect of lattice constants was also investigated. It was found that the gamma -TiAl alloy at stoichiometrical composition exhibits a second-order transition, and the relations between lattice constants a, c and the long-range order sigma are not linear. The lattice constant a decreases whereas c increases with the increase of the long-range order parameter. In this case the ordering induces the transformation from cubic to tetragonal. The change of the lattice constant during the ordering processes can be interpreted in terms of bond length.展开更多
Multifunctional lead-free double perovskites demonstrate remarkable potential towards applications in various fields.Herein,an environmentally-friendly,low-cost,high-throughput Cs_(2)NaFeCl_(6) single crystal with exc...Multifunctional lead-free double perovskites demonstrate remarkable potential towards applications in various fields.Herein,an environmentally-friendly,low-cost,high-throughput Cs_(2)NaFeCl_(6) single crystal with exceedingly high thermal stability is designed and grown.It obtains a cubic lattice system in the temperature range of 80-500 K,accompanied by a completely reversible chromatic variation ranging from yellow to black.Importantly,the intriguing thermochromism is proved to own extremely high reproducibility(over 1000 cycles)without a hysteretic effect,originating from its structural flexibility that including(i)the noteworthy distortion/deformation of[NaCl_(6)]5−and[FeCl_(6)]3−octahedra;(ii)order-disorder arrangement transition of[NaCl_(6)]5−and[FeCl6]3−octahedra as the function of temperature.This study paves the way towards a new class of smart windows and camouflage coatings with an unprecedented colour range based on a Cs_(2)NaFeCl_(6) perovskite.展开更多
To understand and control the interfacial properties of polydiacetylenes(PDAs)vesicles withπ-conjugated backbone is very important for their colorimetric sensing of chemical and biological targets.In this work,we ado...To understand and control the interfacial properties of polydiacetylenes(PDAs)vesicles withπ-conjugated backbone is very important for their colorimetric sensing of chemical and biological targets.In this work,we adopted 10,12-pentacosadiynoic acid(PCDA)as the model molecule to prepare PDAs vesicles in aqueous solution with different forms(from monomer to blue-to-purple-to-red phase)by controlling the UV irradiation dose.The variations of the interfacial conformation of PDAs vesicles during chromatic transitions were inspected by the adsorption behaviors of probe molecules(4-(4-diethylaminostyry)-1-methylpyridinium iodide,D289)on vesicle surface with surface-specific second harmonic generation(SHG)and zeta potential measurements.Resonant SHG signal from D289 adsorbed on vesicle surface attenuated sharply,and the adsorption free energy as well as the corresponding two-photon fluorescence signal decreased slightly in chromatic transitions.While,the change in the surface density of the adsorbed D289 molecules for PDAs vesicles with different forms was relatively small as estimated from zeta potential measurements.The attenuation of the SHG intensity was thus attributed to the overall order-disorder transition and the changed orientation of D289 molecules caused by the gradual distortion of carboxyl head group driven by backbone perturbation.展开更多
Based on cluster variation method (CVM) and natural iteration method (MM),order-disorder phase transition in the intercalation compounds M_(1/2)TiS_2 is simulated bycomputer. The favorable conditions, under which 3^(1...Based on cluster variation method (CVM) and natural iteration method (MM),order-disorder phase transition in the intercalation compounds M_(1/2)TiS_2 is simulated bycomputer. The favorable conditions, under which 3^(1/2)a_0 x a_0 superstructure is formed, aregiven, and the results are in good agreement with the experiments and theoretical calculations. Therelationship between critical temperature and M-ion-vacancy interaction parameter is linear.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss...The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.展开更多
Liver cancer is the fourth cause of cancer-related deaths and the primary cause of death in patients with compensated cirrhosis.In recent years,the role of traditional Chinese medicine in the treatment of liver cancer...Liver cancer is the fourth cause of cancer-related deaths and the primary cause of death in patients with compensated cirrhosis.In recent years,the role of traditional Chinese medicine in the treatment of liver cancer has attracted more and more attention and recognition.Luteolin(LUT)and glycyrrhetinic(GA)are natural compounds extracted from Chinese herbal medicine.LUT exhibits various biological activity including anti-inflammatory,antibacterial,antiviral,anti-tumor,and neuroprotective effects.GA significantly inhibits the growth and metastasis of cancer cells.However,the low water solubility of both compounds hinders their clinical applications.In this study,rod-shaped nanoparticles(NPs)self-assembled from LUT and GA were designed to enhance drug solubility and tumor-targeting capability.We verified that the assembly mechanism of the NPs was π-π stacking.These NPs significantly inhibited the proliferation of liver cancer cells while had no significant effect on normal liver cells.In a mouse model of liver cancer,these NPs demonstrated superior tumor-targeting ability due to the enhanced permeability and retention effect,and the affinity of GA for liver cancer cells,resulting in better therapeutic efficacy with lower systemic toxicity.Results of network pharmacology analysis showed that LUT and GA respectively targeted estrogen receptor 1(ESR1)protein and cyclin-dependent kinase 1(CDK1)protein to corporately induce tumor cell cycle arrest,which induced the inhibition of tumor cell proliferation.In conclusion,this study provides a novel reference for the treatment of liver cancer.展开更多
The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals...The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals,dielectrics,biological materials,and semiconductors.Because of its unique size effect,nanoscale flexoelectricity has shown novel phenomena and promising applications in electronics,optronics,mechatronics,and photovoltaics.In this review,we provide a succinct report on the discovery and development of the flexoelectric effect,focusing on flexoelectric materials and related applications.Finally,we discuss recent flexoelectric research progress and still‐unsolved problems.展开更多
This study explores the housing distribution effect of the Housing Provident Fund(HPF)system on households.Utilizing data from the China Household Finance Survey conducted in 2013,2015,2017,and 2019,this study empiric...This study explores the housing distribution effect of the Housing Provident Fund(HPF)system on households.Utilizing data from the China Household Finance Survey conducted in 2013,2015,2017,and 2019,this study empirically investigates this effect from two dimensions:the impact of HPF payments on household income and housing loan behavior,and the impact on the Gini coefficient of housing assets within the group.The results indicate that the HPF payment does not significantly impact household income levels.Instead,it increases their likelihood of obtaining housing loans,particularly for middle-income households.Additionally,for any group of families,the HPF payment decreased the housing Gini coefficient among households by approximately 0.11 units.This study may be the first to provide the most direct empirical evidence on the extent of HPF’s impact on housing inequality within a group.It also questions the inference in the literature that“HPF will aggravate housing inequality within the group.”Based on this study’s findings,we expect that housing inequality will continue to be alleviated with continued HPF implementation.In particular,this effect will be more significant if the credit support for lowincome families to purchase houses through the HPF can be further enhanced.展开更多
Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest managemen...Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.展开更多
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P...Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.展开更多
With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase t...With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future.展开更多
In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence ...In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.展开更多
Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challe...Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.展开更多
Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer...Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.展开更多
Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective ...Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.展开更多
基金Sponsored by the National Key Research and Development Program(Grant No.2016YFB0100500)
文摘After describing research status of super-structure for Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2,diffraction patterns of Li (Ni_(1/3)Co_(1/3)Mn_(1/3)) O_2 in different order parameters have been researched by Powder-cell program,including crystal structure,X-ray and neutron diffraction pattern,anomalous diffraction pattern and comparison of NiCoMn in different positions. The influence of order parameters on intensity of matrix and super-lattice diffraction lines has also been analyzed and the summarization and prospect have been made lastly.
基金supported by the Major Scientific and Technological Projects in Yunnan Province(No.202002AB080001-1)the National Natural Science Foundation of China(Nos.U1602275 and 51971059).Special thanks are due to the instrumen-tal data analysis from the Analytical and Testing Center,Northeast-ern University。
文摘The Fe-Pt based intermetallic compounds exhibit good chemical stability and unique magnetic proper-ties,where Ni is an important additional element to optimize the magnetic properties or obtain the outstanding catalytic performances of the Fe-Pt based alloys.Knowledge of how Ni addition affects the order-disorder transitions of the Fe-Pt intermetallics is thus necessary;however,the related information is limited.Therefore,in this work,the phase diagrams of the Fe-Ni-Pt system were experimentally in-vestigated,and as a result,the isothermal sections of the Fe-Ni-Pt system at 600 and 900℃,as well as the vertical sections of Fe_(80)Ni_(20)-Pt_(80)Ni_(20)and Fe_(50)Pt_(50)-Ni_(50)Pt_(50)were constructed.Based on these re-sults,the influences of Ni addition on the crystal stabilities and phase transformations of the ordered Fe-Pt intermetallics have been well described.The results show that the L1_(0)-FePt and L1_(0)-NiPt phases form a ternary continuous solid solution of L1_(0)-(Fe,Ni)Pt,whereas Ni can dissolve in the L1_(2)-Fe_(3)Pt and L1_(2)-FePt_(3)phases as high as 57.0 at.%and 26.0 at.%at 600℃,respectively.The selective occupancy of Ni atoms has been predicted,which should depend on the alloy composition.For both the L1_(0)-(Fe,Ni)Pt and L1_(2)-FePt_(3)phases,when Pt contents are less than their stoichiometric values,Ni atoms will preferentially occupy the Pt sublattice,forming as many nearest-neighbor Fe-Pt bonds as possible.All these results can correlate the alloy compositions,annealing temperatures and crystal structures to both magnetic and catalytic properties,thus providing a basis for optimizing the Fe-Ni-Pt alloys towards enhanced magnetic or catalytic performances.
基金This work was financially supported by the National Natural Science Foundation of China under contract No. 59895151-01.
文摘Based on pair potential, the Bragg Williams (B-W) model is modified to takeinto account the effect of the lattice parameter on theoretical order-disorder transformationanalysis. The main purpose of this work is to understand the basic aspects of this effect andrelated reasonable model on order-disorder transformation. In the present approach, theconfiguration free energy is chosen as function of the lattice parameter and the long-range order.This energy is calculated through Taylor's expansion, starting from the disordered state. It wasfound that the configuration free energy has been strongly modified when the lattice parameter istaken into account. It was also found only one type of order-disorder transformation exists in ABalloy and three kinds of order-disorder transformations for non-equiatomic alloy system such as A_3Balloy. This result is in agreement with experiments.
基金the National Natural Science Foundation of China under contract No. 59895151-01.]
文摘The embedded atom method (EAM) was used to theoretically analyze the effect of the lattice parameter variation on the order-disorder transformation in binary alloys. Based on EAM, it is found that only one kind of order-disorder transition (second-order transition) exists for AB alloy. Three groups of order-disorder transformation can be observed for the A(3)B or AB(3) compounds. For group I, the order-disorder is a completely first-order transition. For group II, the order-disorder transformation is a classical first-order transition. For group III, the order-disorder transformation is found to be a second-order transition. The lattice parameter variations have a significant effect on E-2 coefficient, which is related to the ordering energy. These results are in good agreement with experiments.
基金This work was financially supported by the National Natural Science Foundation of China under Contract No.59895151-01
文摘The embedded atom method (EAM) was used to study the order-disorder transformation in gamma -TiAl alloy with L1(0). structure at stoichiometrical composition, and the effect of lattice constants was also investigated. It was found that the gamma -TiAl alloy at stoichiometrical composition exhibits a second-order transition, and the relations between lattice constants a, c and the long-range order sigma are not linear. The lattice constant a decreases whereas c increases with the increase of the long-range order parameter. In this case the ordering induces the transformation from cubic to tetragonal. The change of the lattice constant during the ordering processes can be interpreted in terms of bond length.
基金The research was funded by the National Natural Science Foundation of China(No.51802120,51872126,22075103,51672111)Guangdong Basic and Applied Basic Research Foundation for Distinguished Young Scholar(No.2019B151502030)+7 种基金Natural Science Foundation of Guangdong Province(No.2018030310181)the Science and Technology Plan Project of Guangzhou(No.202002030159)Guangdong Basic and Applied Basic Research Foundation for Young Scholar(No.2020A1515111057)‘100 Talents Program of Hebei Province’(No.E2014100008)the Fundamental Research Funds for the Central Universities(No.21619406)X.Y.thanks for the Special Funds for the Cultivation of Guangdong College Students'Scientific and Technological Innovation("Climbing Program"Special Funds)(No.pdjh2019a0055)J.Fan also thanks for the project support for"Young Top talents"in the Pearl River Talent Project of Guangdong Province(2017GC010424)the Guangdong Provincial Innovation and Entrepreneurship Project(grant 2016ZT06D081).
文摘Multifunctional lead-free double perovskites demonstrate remarkable potential towards applications in various fields.Herein,an environmentally-friendly,low-cost,high-throughput Cs_(2)NaFeCl_(6) single crystal with exceedingly high thermal stability is designed and grown.It obtains a cubic lattice system in the temperature range of 80-500 K,accompanied by a completely reversible chromatic variation ranging from yellow to black.Importantly,the intriguing thermochromism is proved to own extremely high reproducibility(over 1000 cycles)without a hysteretic effect,originating from its structural flexibility that including(i)the noteworthy distortion/deformation of[NaCl_(6)]5−and[FeCl_(6)]3−octahedra;(ii)order-disorder arrangement transition of[NaCl_(6)]5−and[FeCl6]3−octahedra as the function of temperature.This study paves the way towards a new class of smart windows and camouflage coatings with an unprecedented colour range based on a Cs_(2)NaFeCl_(6) perovskite.
基金This work was supported by the National Natural Science Foundation of China(No.21403292,No.21403293,No.21473249,and No.21673285),and the funding from the Shenzhen city(No.JCYJ20170307150520453).
文摘To understand and control the interfacial properties of polydiacetylenes(PDAs)vesicles withπ-conjugated backbone is very important for their colorimetric sensing of chemical and biological targets.In this work,we adopted 10,12-pentacosadiynoic acid(PCDA)as the model molecule to prepare PDAs vesicles in aqueous solution with different forms(from monomer to blue-to-purple-to-red phase)by controlling the UV irradiation dose.The variations of the interfacial conformation of PDAs vesicles during chromatic transitions were inspected by the adsorption behaviors of probe molecules(4-(4-diethylaminostyry)-1-methylpyridinium iodide,D289)on vesicle surface with surface-specific second harmonic generation(SHG)and zeta potential measurements.Resonant SHG signal from D289 adsorbed on vesicle surface attenuated sharply,and the adsorption free energy as well as the corresponding two-photon fluorescence signal decreased slightly in chromatic transitions.While,the change in the surface density of the adsorbed D289 molecules for PDAs vesicles with different forms was relatively small as estimated from zeta potential measurements.The attenuation of the SHG intensity was thus attributed to the overall order-disorder transition and the changed orientation of D289 molecules caused by the gradual distortion of carboxyl head group driven by backbone perturbation.
基金This work was supported by the Foundation of Civil Aviation University of China (No. 2001-3-18).
文摘Based on cluster variation method (CVM) and natural iteration method (MM),order-disorder phase transition in the intercalation compounds M_(1/2)TiS_2 is simulated bycomputer. The favorable conditions, under which 3^(1/2)a_0 x a_0 superstructure is formed, aregiven, and the results are in good agreement with the experiments and theoretical calculations. Therelationship between critical temperature and M-ion-vacancy interaction parameter is linear.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金supported by the National Key R&D Program of China(No.2017YFB0304402)。
文摘The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase.
基金the financial support from Henan Province Natural Science Foundation(No.252300420583)Henan Provincial Science and Technology Research Project(Nos.242102310455,242102310473,242102310517)the Key Project of Science and Technology Research funded by the Henan Provincial Department of Education(No.24A350002)。
文摘Liver cancer is the fourth cause of cancer-related deaths and the primary cause of death in patients with compensated cirrhosis.In recent years,the role of traditional Chinese medicine in the treatment of liver cancer has attracted more and more attention and recognition.Luteolin(LUT)and glycyrrhetinic(GA)are natural compounds extracted from Chinese herbal medicine.LUT exhibits various biological activity including anti-inflammatory,antibacterial,antiviral,anti-tumor,and neuroprotective effects.GA significantly inhibits the growth and metastasis of cancer cells.However,the low water solubility of both compounds hinders their clinical applications.In this study,rod-shaped nanoparticles(NPs)self-assembled from LUT and GA were designed to enhance drug solubility and tumor-targeting capability.We verified that the assembly mechanism of the NPs was π-π stacking.These NPs significantly inhibited the proliferation of liver cancer cells while had no significant effect on normal liver cells.In a mouse model of liver cancer,these NPs demonstrated superior tumor-targeting ability due to the enhanced permeability and retention effect,and the affinity of GA for liver cancer cells,resulting in better therapeutic efficacy with lower systemic toxicity.Results of network pharmacology analysis showed that LUT and GA respectively targeted estrogen receptor 1(ESR1)protein and cyclin-dependent kinase 1(CDK1)protein to corporately induce tumor cell cycle arrest,which induced the inhibition of tumor cell proliferation.In conclusion,this study provides a novel reference for the treatment of liver cancer.
基金support of the National Natural Science Foundation of China(Grant Nos.52192611,51872031,61904013,and 62405157)China Postdoctoral Science Foundation(Nos.2023M741890 and GZC20231215)the Fundamental Research Funds for the Central Universities.
文摘The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals,dielectrics,biological materials,and semiconductors.Because of its unique size effect,nanoscale flexoelectricity has shown novel phenomena and promising applications in electronics,optronics,mechatronics,and photovoltaics.In this review,we provide a succinct report on the discovery and development of the flexoelectric effect,focusing on flexoelectric materials and related applications.Finally,we discuss recent flexoelectric research progress and still‐unsolved problems.
基金funded by the Humanities and Social Sciences Research Project of the Ministry of Education of China(Project No.23XJC790007).
文摘This study explores the housing distribution effect of the Housing Provident Fund(HPF)system on households.Utilizing data from the China Household Finance Survey conducted in 2013,2015,2017,and 2019,this study empirically investigates this effect from two dimensions:the impact of HPF payments on household income and housing loan behavior,and the impact on the Gini coefficient of housing assets within the group.The results indicate that the HPF payment does not significantly impact household income levels.Instead,it increases their likelihood of obtaining housing loans,particularly for middle-income households.Additionally,for any group of families,the HPF payment decreased the housing Gini coefficient among households by approximately 0.11 units.This study may be the first to provide the most direct empirical evidence on the extent of HPF’s impact on housing inequality within a group.It also questions the inference in the literature that“HPF will aggravate housing inequality within the group.”Based on this study’s findings,we expect that housing inequality will continue to be alleviated with continued HPF implementation.In particular,this effect will be more significant if the credit support for lowincome families to purchase houses through the HPF can be further enhanced.
文摘Agricultural intensification has led to an increase in monoculture and the use of chemical pesticides,resulting in a decline in biodiversity and a reduction in ecosystem services,particularly biological pest management.However,studies have shown that agroforestry can not only improve land productivity and biodiversity but also regulate some ecosystem services.This study reviews the impacts of physical and biological factors on herbivorous pests,parasites,and predatory natural enemies in fruit-crop agroforestry systems.Fruit-crop agroforestry systems provide high spatial heterogeneity by altering crop layouts,regulating the microclimate and soil quality,and offering food resources and shelter for natural enemies,thus promoting biological pest control.This enhances biological control and makes the agrocomplex system an effective tool for sustainable agriculture.Our research shows that volatile plant substances attract or repel pests and natural enemies based on the characteristics of the insects themselves.When scientifically designed,fruit-crop agroforestry systems provide high spatial heterogeneity and favorable microclimatic conditions,which enhance biological pest control and make the agroforestry system an effective tool for sustainable agriculture.Our research shows that fruit-crop agroforestry systems can provide richer food resources and habitat,enhancing biological pest control and improving pest management.
基金supported by the National Natural Science Foundation of China(No.41473068)supported by China Postdoctoral Science Foundation(No.2022M722667)。
文摘Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs.
基金supported by the National Key R&D Program of China(No.2022YFE0109500)the National Natural Science Foundation of China(Nos.52071255,52301250,52171190 and 12304027)+2 种基金the Key R&D Project of Shaanxi Province(No.2022GXLH-01-07)the Fundamental Research Funds for the Central Universities(China)the World-Class Universities(Disciplines)and the Characteristic Development Guidance Funds for the Central Universities.
文摘With the rapid development of artificial intelligence,magnetocaloric materials as well as other materials are being developed with increased efficiency and enhanced performance.However,most studies do not take phase transitions into account,and as a result,the predictions are usually not accurate enough.In this context,we have established an explicable relationship between alloy compositions and phase transition by feature imputation.A facile machine learning is proposed to screen candidate NiMn-based Heusler alloys with desired magnetic entropy change and magnetic transition temperature with a high accuracy R^(2)≈0.98.As expected,the measured properties of prepared NiMn-based alloys,including phase transition type,magnetic entropy changes and transition temperature,are all in good agreement with the ML predictions.As well as being the first to demonstrate an explicable relationship between alloy compositions,phase transitions and magnetocaloric properties,our proposed ML model is highly predictive and interpretable,which can provide a strong theoretical foundation for identifying high-performance magnetocaloric materials in the future.
文摘In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.
基金supported by the National Natural Science Foundation of China(Nos.22178388 and 22108306)Taishan Scholars Program of Shandong Province(No.tsqn201909065)Chongqing Science and Technology Bureau(No.cstc2019jscx-gksb X0032).
文摘Structural regulation of Pd-based electrocatalytic hydrodechlorination(EHDC)catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging.Herein,a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam(NF),which can inductive regulation of Pd for improving the EHDC performance.The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound,respectively.The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface,which optimizied the binding of EHDC intermediates.Additionally,the Mn-doped interlayer acted as a promoter for generating H∗and accelerating the EHDC reaction.This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
基金supported by the Shenzhen Science and Technology Program(JCYJ20230808105111022,JCYJ20220818095806013)Natural Science Foundation of Guangdong(2023A1515012267)+1 种基金the National Natural Science Foundation of China(22178223)the Royal Society/NSFC cost share program(IEC\NSFC\223372).
文摘Low-electrode capacitive deionization(FCDI)is an emerging desalination technology with great potential for removal and/or recycling ions from a range of waters.However,it still suffers from inefficient charge transfer and ion transport kinetics due to weak turbulence and low electric intensity in flow electrodes,both restricted by the current collectors.Herein,a new tip-array current collector(designated as T-CC)was developed to replace the conventional planar current collectors,which intensifies both the charge transfer and ion transport significantly.The effects of tip arrays on flow and electric fields were studied by both computational simulations and electrochemical impedance spectroscopy,which revealed the reduction of ion transport barrier,charge transport barrier and internal resistance.With the voltage increased from 1.0 to 1.5 and 2.0 V,the T-CC-based FCDI system(T-FCDI)exhibited average salt removal rates(ASRR)of 0.18,0.50,and 0.89μmol cm^(-2) min^(-1),respectively,which are 1.82,2.65,and 2.48 folds higher than that of the conventional serpentine current collectors,and 1.48,1.67,and 1.49 folds higher than that of the planar current collectors.Meanwhile,with the solid content in flow electrodes increased from 1 to 5 wt%,the ASRR for T-FCDI increased from 0.29 to 0.50μmol cm^(-2) min^(-1),which are 1.70 and 1.67 folds higher than that of the planar current collectors.Additionally,a salt removal efficiency of 99.89%was achieved with T-FCDI and the charge efficiency remained above 95%after 24 h of operation,thus showing its superior long-term stability.
文摘Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing.