In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, t...In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.展开更多
The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the pro...The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions (if the uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.展开更多
Since the telecommunications companies experience great competition,high churn rate,data traffic issues during the Covid-19 pandemic and the upgrade to 5G connectivity,the finance management of a telecommunications co...Since the telecommunications companies experience great competition,high churn rate,data traffic issues during the Covid-19 pandemic and the upgrade to 5G connectivity,the finance management of a telecommunications company should be analyzed to study the volatility and returns in the sector.This paper aims to develop a goal programming model to examine the asset and liability management of a telecommunication company,namely Telekom Malaysia Berhad(TM)in Malaysia.The result of this study shows that TM has achieved all the goals in maximizing assets,equities,profits,earnings and optimum management item while minimizing liabilities over the period of study from 2015 to 2019.Potential improvements on these goals have also been identified through this study.This paper has also contributed to the studies in financial management since past studies have not been done on asset and liability management in telecommunications companies which is rapidly growing and expanding even while the world is suffering from economy crisis during this pandemic.展开更多
This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in ...This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.展开更多
In this paper,we investigate three canonical forms of interval convex quadratic pro-gramming problems.Necessary and suficient conditions for checking weak and strong optimality of given vector corresponding to various...In this paper,we investigate three canonical forms of interval convex quadratic pro-gramming problems.Necessary and suficient conditions for checking weak and strong optimality of given vector corresponding to various forms of feasible region,are established respectively.By using the concept of feasible direction,these conditions are formulated in the form of linear systems with both equations and inequalities.In addition,we provide two specific examples to illustrate the efficiency of the conditions.展开更多
To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-...To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-type continuity results about the optimal value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of the linear constraints. The obtained results extend some existing results for continuous quadratic programs, and, more importantly, lay the foundation for further theoretical study and corresponding algorithm analysis on mixed-integer quadratic programs.展开更多
With the expression theorem of convex polyhedron, this paper gives the general expression for the solutions in standard linear programming problems. And the calculation procedures in determining the optimal solutions ...With the expression theorem of convex polyhedron, this paper gives the general expression for the solutions in standard linear programming problems. And the calculation procedures in determining the optimal solutions are also given.展开更多
We prove that the model with physical and human capital adjustment costs has optimal solution when the production function is increasing return and the structure of vetor fields of the model changes substantially when...We prove that the model with physical and human capital adjustment costs has optimal solution when the production function is increasing return and the structure of vetor fields of the model changes substantially when the prodution function from decreasing return turns to increasing return.And it is shown that the economy is improved when the coefficients of adjustment costs become small.展开更多
This article presents a novel optimization approach called RSWTLBO for accurately identifying unknown parameters in photovoltaic(PV)models.The objective is to address challenges related to the detection and maintenanc...This article presents a novel optimization approach called RSWTLBO for accurately identifying unknown parameters in photovoltaic(PV)models.The objective is to address challenges related to the detection and maintenance of PV systems and the improvement of conversion efficiency.RSWTLBO combines adaptive parameter w,Single Solution Optimization Mechanism(SSOM),and Weight Probability Exploration Strategy(WPES)to enhance the optimization ability of TLBO.The algorithm achieves a balance between exploitation and exploration throughout the iteration process.The SSOM allows for local exploration around a single solution,improving solution quality and eliminating inferior solutions.The WPES enables comprehensive exploration of the solution space,avoiding the problem of getting trapped in local optima.The algo-rithm is evaluated by comparing it with 10 other competitive algorithms on various PV models.The results demonstrate that RSWTLBO consistently achieves the lowest Root Mean Square Errors on single diode models,double diode models,and PV module models.It also exhibits robust performance under varying irradiation and temperature conditions.The study concludes that RSWTLBO is a practical and effective algorithm for identifying unknown parameters in PV models.展开更多
In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain a...In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.展开更多
In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to dif...In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to different factors. Finding optimal solutions to the transportation problem in the context of variations in cost is vital for ensuring cost efficiency, resource allocation, customer satisfaction, competitive advantage, environmental responsibility, risk mitigation, and operational fortitude in practical situations. This paper opens up new directions for the solution of transportation problems by introducing two key theorems. By using these theorems, we can develop an algorithm for identifying the optimal solution attributes and permitting accurate quantification of changes in overall transportation costs through the addition or subtraction of constants to specific rows or columns, as well as multiplication by constants inside the cost matrix. It is anticipated that the two reliable techniques presented in this study will provide theoretical insights and practical solutions to enhance the efficiency and cost-effectiveness of transportation systems. Finally, numerical illustrations are presented to verify the proposed approaches.展开更多
Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alter...Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial iterative matrix X<sub>0</sub> = 0, the least Frobenius norm symmetric positive semidefinite solution of these matrix equations is obtained. A numerical example shows that the new algorithm is feasible and effective.展开更多
Dear Editor,This letter investigates the optimal transmission scheduling problem in remote state estimation systems over an unknown wireless channel.We propose a partially observable Markov decision Process(POMDP)fram...Dear Editor,This letter investigates the optimal transmission scheduling problem in remote state estimation systems over an unknown wireless channel.We propose a partially observable Markov decision Process(POMDP)framework to model the sensor scheduling problem.By truncating and simplifying the POMDP problem,we have established the properties of the optimal solution under the POMDP model,through a fixed-point contraction method,and have shown that the threshold structure of the POMDP solution is not easily attainable.Subsequently,we obtained a suboptimal solution via Qlearning.Numerical simulations are used to demonstrate the efficacy of the proposed Q-learning approach.展开更多
A detailed study of some simple forms which have a given special structure have been solved, in this paper, we research the extension of this kind of special structure problems.
Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-wel...Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-welding residual stress and deformation were definitely different among the four welding sequences.The results showed that the highest temperature in Solution A was approximately 200℃higher than the melting point of base metal.High residual stress was resulted from this large temperature gradient and mainly concentrated on the welding vicinity between beam and crash box.The welding deformation primarily occurred in both of the contraction of two-ends of the beam and the self-contraction of crash box.Compared with other welding sequences,the residual stress in Solution A was the smallest,whereas the welding deformation was the largest.However,the optimal sequence was Solution B because of the effective reduction of residual stress and good assembly requirements.展开更多
An optimization solution to roll shifting strategy for alternately rolling campaign is presented. All the strips in a rolling campaign are divided into narrow strips and wide ones, and shifting position of narrow stri...An optimization solution to roll shifting strategy for alternately rolling campaign is presented. All the strips in a rolling campaign are divided into narrow strips and wide ones, and shifting position of narrow strips is obtained by the recursive method, and then shifting position of wide strips is optimized by NSGA-II which is a multiobjective genetic algorithm. For wide strips, a multi-objective optimization model of roll shifting strategy is pro posed, which takes 3 wear contour factors including edge smoothness, body smoothness and edge drop as optimization objectives. The Pareto optimal front of roll shifting strategy can be gained quickly by NSGA-II, which suggests a series of alternative solutions to roll shifting strategy. Analysis shows that the conflict exists among the 3 objectives. The final optimal solution is selected from the Pareto optimal solutions by the weighted-sum decision-making method. Industrial production proves the validity of the solution, and it can improve strip profile of alternately rolling, reduce strip edge wave, and extend the rolling miles of rolling campaigns.展开更多
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod...A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.展开更多
With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network tr...With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network transmission has led to low data processing efficiency.Fortunately,edge computing can solve this problem,effectively reduce the delay of data transmission,and improve data processing capacity,so that the crowdsourcing platform can make better decisions faster.Therefore,this paper combines spatio-temporal crowdsourcing and edge computing to study the Multi-Objective Optimization Task Assignment(MOO-TA)problem in the edge computing environment.The proposed online incentive mechanism considers the task difficulty attribute to motivate crowd workers to perform sensing tasks in the unpopular area.In this paper,the Weighted and Multi-Objective Particle Swarm Combination(WAMOPSC)algorithm is proposed to maximize both platform’s and crowd workers’utility,so as to maximize social welfare.The algorithm combines the traditional Linear Weighted Summation(LWS)algorithm and Multi-Objective Particle Swarm Optimization(MOPSO)algorithm to find pareto optimal solutions of multi-objective optimization task assignment problem as much as possible for crowdsourcing platform to choose.Through comparison experiments on real data sets,the effectiveness and feasibility of the proposed method are evaluated.展开更多
The traditional foundry industry has developed rapidly in recently years due to advancements in computer technology. Modifying and designing the feeding system has become more convenient with the help of the casting s...The traditional foundry industry has developed rapidly in recently years due to advancements in computer technology. Modifying and designing the feeding system has become more convenient with the help of the casting software, Inte CAST. A common method of designing a feeding system is to first design the initial systems, run simulations with casting software, analyze the feedback, and then redesign. In this work, genetic, fruit fly, and interior point optimizer(IPOPT) algorithms were introduced to guide the optimal riser design for the feeding system. The results calculated by the three optimal algorithms indicate that the riser volume has a weak relationship with the modulus constraint; while it has a close relationship with the volume constraint. Based on the convergence rate, the fruit fly algorithm was obviously faster than the genetic algorithm. The optimized riser was also applied during casting, and was simulated using Inte CAST. The numerical simulation results reveal that with the same riser volume, the riser optimized by the genetic and fruit fly algorithms has a similar improvement on casting shrinkage. The IPOPT algorithm has the advantage of causing the smallest shrinkage porosities, compared to those of the genetic and fruit fly algorithms, which were almost the same.展开更多
基金Supported by the Research Foundation of Jinan University(04SKZD01).
文摘In this paper, the nonlinear programming problem with quasimonotonic ( both quasiconvex and quasiconcave )objective function and linear constraints is considered. With the decomposition theorem of polyhedral sets, the structure of optimal solution set for the programming problem is depicted. Based on a simplified version of the convex simplex method, the uniqueness condition of optimal solution and the computational procedures to determine all optimal solutions are given, if the uniqueness condition is not satisfied. An illustrative example is also presented.
文摘The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions (if the uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.
文摘Since the telecommunications companies experience great competition,high churn rate,data traffic issues during the Covid-19 pandemic and the upgrade to 5G connectivity,the finance management of a telecommunications company should be analyzed to study the volatility and returns in the sector.This paper aims to develop a goal programming model to examine the asset and liability management of a telecommunication company,namely Telekom Malaysia Berhad(TM)in Malaysia.The result of this study shows that TM has achieved all the goals in maximizing assets,equities,profits,earnings and optimum management item while minimizing liabilities over the period of study from 2015 to 2019.Potential improvements on these goals have also been identified through this study.This paper has also contributed to the studies in financial management since past studies have not been done on asset and liability management in telecommunications companies which is rapidly growing and expanding even while the world is suffering from economy crisis during this pandemic.
文摘This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.
基金Supported by the Natural Science Foundation of Zhejiang Province(LY21A010021)the National Natural Science Foundation of China(11701506)。
文摘In this paper,we investigate three canonical forms of interval convex quadratic pro-gramming problems.Necessary and suficient conditions for checking weak and strong optimality of given vector corresponding to various forms of feasible region,are established respectively.By using the concept of feasible direction,these conditions are formulated in the form of linear systems with both equations and inequalities.In addition,we provide two specific examples to illustrate the efficiency of the conditions.
基金Supported by the National Natural Science Foundation of China(10571141,70971109)the Key Projectof the National Natural Science Foundation of China(70531030)
文摘To properly describe and solve complex decision problems, research on theoretical properties and solution of mixed-integer quadratic programs is becoming very important. We establish in this paper different Lipschitz-type continuity results about the optimal value function and optimal solutions of mixed-integer parametric quadratic programs with parameters in the linear part of the objective function and in the right-hand sides of the linear constraints. The obtained results extend some existing results for continuous quadratic programs, and, more importantly, lay the foundation for further theoretical study and corresponding algorithm analysis on mixed-integer quadratic programs.
文摘With the expression theorem of convex polyhedron, this paper gives the general expression for the solutions in standard linear programming problems. And the calculation procedures in determining the optimal solutions are also given.
基金Supported by the Nationel Natural Science Foundation of China(79970104)
文摘We prove that the model with physical and human capital adjustment costs has optimal solution when the production function is increasing return and the structure of vetor fields of the model changes substantially when the prodution function from decreasing return turns to increasing return.And it is shown that the economy is improved when the coefficients of adjustment costs become small.
基金supported in part by the Natural Science Foundation of Zhejiang Province(LTGS23E070001)National Natural Science Foundation of China(62076185,62301367).
文摘This article presents a novel optimization approach called RSWTLBO for accurately identifying unknown parameters in photovoltaic(PV)models.The objective is to address challenges related to the detection and maintenance of PV systems and the improvement of conversion efficiency.RSWTLBO combines adaptive parameter w,Single Solution Optimization Mechanism(SSOM),and Weight Probability Exploration Strategy(WPES)to enhance the optimization ability of TLBO.The algorithm achieves a balance between exploitation and exploration throughout the iteration process.The SSOM allows for local exploration around a single solution,improving solution quality and eliminating inferior solutions.The WPES enables comprehensive exploration of the solution space,avoiding the problem of getting trapped in local optima.The algo-rithm is evaluated by comparing it with 10 other competitive algorithms on various PV models.The results demonstrate that RSWTLBO consistently achieves the lowest Root Mean Square Errors on single diode models,double diode models,and PV module models.It also exhibits robust performance under varying irradiation and temperature conditions.The study concludes that RSWTLBO is a practical and effective algorithm for identifying unknown parameters in PV models.
文摘In operations research, the transportation problem (TP) is among the earliest and most effective applications of the linear programming problem. Unbalanced transportation problems reflect the reality of supply chain and logistics situations where the available supply of goods may not precisely match the demand at different locations. To deal with an unbalanced transportation problem (UTP), it is essential first to convert it into a balanced transportation problem (BTP) to find an initial basic feasible solution (IBFS) and hence the optimal solution. The present paper is concerned with introducing a new approach to convert an unbalanced transportation problem into a balanced one and as a consequence to obtain optimum total transportation cost. Numerical examples are provided to demonstrate the suggested method.
文摘In this paper, we have used two reliable approaches (theorems) to find the optimal solutions to transportation problems, using variations in costs. In real-life scenarios, transportation costs can fluctuate due to different factors. Finding optimal solutions to the transportation problem in the context of variations in cost is vital for ensuring cost efficiency, resource allocation, customer satisfaction, competitive advantage, environmental responsibility, risk mitigation, and operational fortitude in practical situations. This paper opens up new directions for the solution of transportation problems by introducing two key theorems. By using these theorems, we can develop an algorithm for identifying the optimal solution attributes and permitting accurate quantification of changes in overall transportation costs through the addition or subtraction of constants to specific rows or columns, as well as multiplication by constants inside the cost matrix. It is anticipated that the two reliable techniques presented in this study will provide theoretical insights and practical solutions to enhance the efficiency and cost-effectiveness of transportation systems. Finally, numerical illustrations are presented to verify the proposed approaches.
文摘Dykstra’s alternating projection algorithm was proposed to treat the problem of finding the projection of a given point onto the intersection of some closed convex sets. In this paper, we first apply Dykstra’s alternating projection algorithm to compute the optimal approximate symmetric positive semidefinite solution of the matrix equations AXB = E, CXD = F. If we choose the initial iterative matrix X<sub>0</sub> = 0, the least Frobenius norm symmetric positive semidefinite solution of these matrix equations is obtained. A numerical example shows that the new algorithm is feasible and effective.
基金supported in part by the Frontier Technology R&D Plan of Jiangsu Province(BF2024065)the Shenzhen Science and Technology Program(JCYJ20230807114609019)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX22_0236).
文摘Dear Editor,This letter investigates the optimal transmission scheduling problem in remote state estimation systems over an unknown wireless channel.We propose a partially observable Markov decision Process(POMDP)framework to model the sensor scheduling problem.By truncating and simplifying the POMDP problem,we have established the properties of the optimal solution under the POMDP model,through a fixed-point contraction method,and have shown that the threshold structure of the POMDP solution is not easily attainable.Subsequently,we obtained a suboptimal solution via Qlearning.Numerical simulations are used to demonstrate the efficacy of the proposed Q-learning approach.
文摘A detailed study of some simple forms which have a given special structure have been solved, in this paper, we research the extension of this kind of special structure problems.
基金Projects(31665004,31715011) supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,ChinaProject(15C0450) supported by the Educational Commission of Hunan Province of China
文摘Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-welding residual stress and deformation were definitely different among the four welding sequences.The results showed that the highest temperature in Solution A was approximately 200℃higher than the melting point of base metal.High residual stress was resulted from this large temperature gradient and mainly concentrated on the welding vicinity between beam and crash box.The welding deformation primarily occurred in both of the contraction of two-ends of the beam and the self-contraction of crash box.Compared with other welding sequences,the residual stress in Solution A was the smallest,whereas the welding deformation was the largest.However,the optimal sequence was Solution B because of the effective reduction of residual stress and good assembly requirements.
基金Item Sponsored by National Natural Science Foundation of China(50974039)
文摘An optimization solution to roll shifting strategy for alternately rolling campaign is presented. All the strips in a rolling campaign are divided into narrow strips and wide ones, and shifting position of narrow strips is obtained by the recursive method, and then shifting position of wide strips is optimized by NSGA-II which is a multiobjective genetic algorithm. For wide strips, a multi-objective optimization model of roll shifting strategy is pro posed, which takes 3 wear contour factors including edge smoothness, body smoothness and edge drop as optimization objectives. The Pareto optimal front of roll shifting strategy can be gained quickly by NSGA-II, which suggests a series of alternative solutions to roll shifting strategy. Analysis shows that the conflict exists among the 3 objectives. The final optimal solution is selected from the Pareto optimal solutions by the weighted-sum decision-making method. Industrial production proves the validity of the solution, and it can improve strip profile of alternately rolling, reduce strip edge wave, and extend the rolling miles of rolling campaigns.
基金supported by the National Natural Science Foundation of China (60873099)
文摘A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.
基金supported in part by the National Natural Science Foundation of China under Grant 61822602,Grant 61772207,Grant 61802331,Grant 61572418,Grant 61602399,Grant 61702439 and Grant 61773331the China Postdoctoral Science Foundation under Grant 2019T120732 and Grant 2017M622691+1 种基金the National Science Foundation(NSF)under Grant 1704287,Grant 1252292 and Grant 1741277the Natural Science Foundation of Shandong Province under Grant ZR2016FM42.
文摘With the development of the Internet of Things(IoT),spatio-temporal crowdsourcing(mobile crowdsourcing)has become an emerging paradigm for addressing location-based sensing tasks.However,the delay caused by network transmission has led to low data processing efficiency.Fortunately,edge computing can solve this problem,effectively reduce the delay of data transmission,and improve data processing capacity,so that the crowdsourcing platform can make better decisions faster.Therefore,this paper combines spatio-temporal crowdsourcing and edge computing to study the Multi-Objective Optimization Task Assignment(MOO-TA)problem in the edge computing environment.The proposed online incentive mechanism considers the task difficulty attribute to motivate crowd workers to perform sensing tasks in the unpopular area.In this paper,the Weighted and Multi-Objective Particle Swarm Combination(WAMOPSC)algorithm is proposed to maximize both platform’s and crowd workers’utility,so as to maximize social welfare.The algorithm combines the traditional Linear Weighted Summation(LWS)algorithm and Multi-Objective Particle Swarm Optimization(MOPSO)algorithm to find pareto optimal solutions of multi-objective optimization task assignment problem as much as possible for crowdsourcing platform to choose.Through comparison experiments on real data sets,the effectiveness and feasibility of the proposed method are evaluated.
基金financially supported by the National Science and Technology Key Projects of Numerical Control(2012ZX04012-011)the State Key Laboratory of Materials Processing and Die&Mold Technology Research Project(2014,2015)
文摘The traditional foundry industry has developed rapidly in recently years due to advancements in computer technology. Modifying and designing the feeding system has become more convenient with the help of the casting software, Inte CAST. A common method of designing a feeding system is to first design the initial systems, run simulations with casting software, analyze the feedback, and then redesign. In this work, genetic, fruit fly, and interior point optimizer(IPOPT) algorithms were introduced to guide the optimal riser design for the feeding system. The results calculated by the three optimal algorithms indicate that the riser volume has a weak relationship with the modulus constraint; while it has a close relationship with the volume constraint. Based on the convergence rate, the fruit fly algorithm was obviously faster than the genetic algorithm. The optimized riser was also applied during casting, and was simulated using Inte CAST. The numerical simulation results reveal that with the same riser volume, the riser optimized by the genetic and fruit fly algorithms has a similar improvement on casting shrinkage. The IPOPT algorithm has the advantage of causing the smallest shrinkage porosities, compared to those of the genetic and fruit fly algorithms, which were almost the same.