In this paper we will give the statistical characteristics and general principles of an optimal structure of the Internet, which is a scale-free network. Since the purpose of the Internet is to allow fast and easy com...In this paper we will give the statistical characteristics and general principles of an optimal structure of the Internet, which is a scale-free network. Since the purpose of the Internet is to allow fast and easy communication, the average path length is used to measure the performance of the network, and the number of edges of the network is used as a metric of its; cost. Based on this, the goal of this Internet optimization problem is to obtain the highest performance with the lowest cost. A multi goal optimization problem is proposed to model this problem. By using two empirical formulas of (k) and (l), we are able to find the statistical characteristics of the optimal structure. There is a critical power law exponent ac for the Internet with power law degree distribution, at which the Internet can obtain a relatively good performance with a low cost. We find that this ac is approximately 2.1.展开更多
To address the challenges of high impurity rate and cane loss rate in mechanized sugarcane harvesting,the internal flow field of the extractor was analyzed through computational fluid dynamics(CFD)simulation,and the s...To address the challenges of high impurity rate and cane loss rate in mechanized sugarcane harvesting,the internal flow field of the extractor was analyzed through computational fluid dynamics(CFD)simulation,and the structure of the extractor was optimized to improve the harvesting quality.The simulation model was validated by comparing simulated and experimental wind speeds at the extractor outlet,yielding a maximum error of 5.29%and an average error of 4.71%,confirming the model’s accuracy.The analysis revealed that abrupt changes in structural geometry lead to significant airflow vortices within the discharge hood,a backflow phenomenon at the outlet,and additional vortices in the cleaning chamber,all of which ultimately result in high impurity rate and cane loss rate.To address these issues,the extractor’s structure was optimized,the outer contour of the discharge hood was designed as a smooth arc curve,and the lower air inlet of the cleaning chamber was changed from rectangular to circular,which eliminated the vortices and improved airflow uniformity.The impurity rate test showed that when the harvester driving speed was 1 km/h,the impurity rate level before and after optimization was comparable across different rotational speeds.At 2 km/h,the low-speed performance(1250 r/min)was significantly improved,reducing the impurity rate by 21.52%.At 3 km/h,the impurity rate decreased by 19.84%and 28.30%at low and medium speeds(1450 r/min),respectively.The cane loss rate test demonstrated that when the extractor speed was 1250 r/min,the difference before and after optimization was minimal.At 1450 r/min,the cane loss rate decreased significantly,with a maximum decrease of 10.75%.At 1650 r/min,the cane loss rate decreased by 8.78%at most.The optimized extractor significantly reduced the impurity rate and cane loss rate at higher harvester speeds(2-3 km/h),making it suitable for large-scale and high-speed harvesting operations and improving the harvesting efficiency.The research results will help to design and improve the performance of the extractor,thus improving the harvest quality and increasing farmers’income.展开更多
The effect of active control imposed at the wall on optimal structures in wall turbulence is studied by using a linear transient growth model.When the detection plane of the control is located in the buffer layer,the ...The effect of active control imposed at the wall on optimal structures in wall turbulence is studied by using a linear transient growth model.When the detection plane of the control is located in the buffer layer,the influence of the control on the transient growth of large scale motion becomes negligible as Reynolds number increases.However,if the control signal is detected at the plane located in the logarithm region,the transient growth at large scale can be greatly suppressed.New peak values of transient growth resulting from the strong blowing and suction on the wall exist.The study indicates that a proper selection of control imposed on the wall can suppress the large scale motion in the logarithmic region.展开更多
In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general effic...In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.展开更多
With analysis of producer's and factor supplier's dual optimization motives,this paper developed an optimal nominal output growth rate model that can conduct quantified estimation.Result of estimation of China...With analysis of producer's and factor supplier's dual optimization motives,this paper developed an optimal nominal output growth rate model that can conduct quantified estimation.Result of estimation of China's optimal industrial structure between1992 and 2009 indicates that optimal nominal output growth rate model has successfully quantified the impact of major events occurring in the process of China's economic operation on the level of deviation between actual industrial structure and optimal industrial structure.Quantitative indicators involved in this model can provide industrial policy instruments for the Chinese government in developing and adjusting industrial structure targets,optimizing resource allocation and advancing industrial structure optimization and upgrade.展开更多
Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease and its incidence rate is rapidly rising.However,effective therapies for the treatment of IPF are still lacking.Phosphodiesterase 4(PDE4)inhibitors were ...Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease and its incidence rate is rapidly rising.However,effective therapies for the treatment of IPF are still lacking.Phosphodiesterase 4(PDE4)inhibitors were reported to be potential anti-fibrotic agents.Herein,structure-based hit-to-lead optimization of natural isoaurostatin(8.98μmol/L)resulted in several potent inhibitors of PDE4 with half maximal inhibitory concentration(IC_(50))values ranging from 35 nmol/L to 126 nmol/L.Co-crystal structures revealed that isoaurostatin compounds exhibited different binding patterns from the classic PDE4 inhibitor rolipram and the analogues would favor to be Z configurations other than the corresponding E isomers.Finally,lead 2–9 showed remarkable in vitro/in vivo anti-fibrotic effects indicating its potential as a novel anti-IPF agent.展开更多
Flow velocity uniformity of the microchannel plate is a major factor affecting the performance of microchannel devices.In order to improve the velocity distribution uniformity of the microchannel plate,we designed two...Flow velocity uniformity of the microchannel plate is a major factor affecting the performance of microchannel devices.In order to improve the velocity distribution uniformity of the microchannel plate,we designed two new microchannel structures:V-type and A-type.The effects of various structural parameters of the manifolds on the velocity distribution are reported.The V-type and A-type microchannel plates had a more uniform velocity distribution compared to the Z-type microchannel plate.The final result showed that it is beneficial for the V-type microchannel plate to obtain a more uniform velocity distribution when the manifold structure parameters are X_(in)=-1,X_(out)=0,Y_(in)=10,Y_(out)=6,Hin=4,H_(out)=1,and R=0.5.展开更多
The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimizati...The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimization problem.Currently,a comprehensive framework for the structural design and optimization of compound balanced BPUs is lacking.Therefore,this study proposes a novel structural design scheme for BPUs,aiming to meet the practical needs of designers and operators by sequentially optimizing both the dynamic characteristics and balance properties of the BPUs.A dynamic model of compound balanced BPU was established based on D'Alembert's principle.The constraints for structural dimensions were formulated based on the actual operational requirements and design experience with BPUs.To optimize the structure,three algorithms were employed:the particle swarm optimization(PSO)algorithm,the genetic algorithm(GA),and the gray wolf optimization(GWO)algorithm.Each newly generated individuals are regulated by constraints to ensure the rationality of the outcomes.Furthermore,the integration of three algorithms ensures the increased likelihood of attaining the global optimal solution.The polished rod acceleration of the optimized structure is significantly reduced,and the dynamic characteristics of the up and down strokes are essentially symmetrical.Additionally,these three algorithms are also applied to the balance optimization of BPUs based on the measured dynamometer card.The calculation results demonstrate that the GWO-based optimization method exhibits excellent robustness in terms of structural optimization by enhancing the operational smoothness of the BPU,as well as in balance optimization by achieving energy conservation.By applying the optimization scheme proposed in this paper,the CYJW7-3-23HF type of BPU was designed,achieving a maximum polished rod acceleration of±0.675 m/s^(2) when operating at a stroke of 6 min^(−1).When deployed in two wells,the root-mean-square(RMS)torque was minimized,reaching values of 7.539 kN·m and 12.921 kN·m,respectively.The proposed design method not only contributes to the personalized customization but also improves the design efficiency of compound balanced BPUs.展开更多
The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal de...The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.展开更多
Purpose–This paper aims to provide a comprehensive analysis of the strategic adjustments in China’s transportation structure,with a particular focus on the pivotal role of railway freight and its integration into th...Purpose–This paper aims to provide a comprehensive analysis of the strategic adjustments in China’s transportation structure,with a particular focus on the pivotal role of railway freight and its integration into the modern logistics system.It seeks to address the need for a more nuanced understanding of the“road to rail”policy,emphasizing the importance of intermodal collaboration and service of fragmented market demands.Design/methodology/approach–The study employs a transport economics perspective to evaluate the achievements and shortcomings of China’s transportation structure optimization.It bases its assessment of the current state of railway freight logistics,multi-modal transportation and the broader implications for the transportation service market on data analysis.The methodology includes a review of existing policies,an examination of industry practices and a comparative analysis with global trends in railway logistics.Findings–The research underscores the importance of focusing on the development of non-bulk materials,noting the insufficiency in the development of China’s rail multi-modal transportation and highlighting the instructive value of successful cases in open-top container road-rail intermodal transportation.The study posits that the railway sector must enhance cooperation with other market entities,aligning with the lead enterprises in the logistics chain that are characterized by speed,high value and strong coordination capabilities,in order to better serve the transportation market.This approach moves away from a reliance on the railway’s own capabilities alone.Originality/value–This paper offers original insights into the transformation of railway freight in China,contributing to the body of knowledge on transportation economics and logistics.It provides valuable recommendations for policymakers and industry practitioners,emphasizing the strategic importance of railway logistics in the context of China’s economic development and intense competition in the supply chain.The value of the article lies in its comprehensive understanding of the complexities involved in the adjustment of transportation structures,providing direction for the market-oriented reform of China’s railway freight sector.展开更多
In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure ...In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure and analyzing its spatial layout with consideration of natural and socio-economic factors.Herein,we proposed a framework for addressing this issue.In this framework,the NSGA-II algorithm was used to construct the multi-objective optimization model of crop planting structures with consideration of water and energy consumption,greenhouse gas(GHG)emissions,economic benefits,as well as food,land,and water security constraints,while the model for planting spatial layout optimization was established with consideration of crop suitability using the MaxEnt model and the improved Hungarian algorithm.This framework was further applied in the Black Soil Region of Northeast China(BSRNC)for analyzing optimized crop planting structures and spatial layouts of three main crops(rice,maize,and soybean)under various scenarios.This study showed that the sown area of rice in the BSRNC decreased by up to 40.73%and 35.30%in the environmental priority scenario and economic-environmental balance scenario,respectively,whereas that of soybean increased by up to 112.44%and 63.31%,respectively.In the economic priority scenario,the sown area of rice increased by up to 93.98%.Expanding the sown area of soybean was effective in reducing GHG emissions.On the contrary,rice production led to greater environmental costs though it provided higher economic returns.Among the three crops,maize exhibited an advantage in balancing environmental and economic benefits.Hegang-Jixi area in the northeast of the BSRNC was identified as the key area with the most intense crop planting transfer among different scenarios.Overall,this framework provides a new methodology for optimizing crop planting structures and spatial layouts with con-sideration of the nexus of various factors.Moreover,the case study demonstrates the applicability and expansion potential of the framework in the fields of sustainable agricultural development and food security assurance.展开更多
In this paper,the front axle of a certain model is taken as the research object,and the stress and deformation of the frontaxle under three typical working conditions are analyzed by finite element technology.Based on...In this paper,the front axle of a certain model is taken as the research object,and the stress and deformation of the frontaxle under three typical working conditions are analyzed by finite element technology.Based on the simulation results,the 3D model of the front axle was optimized,and the finite element analysis of the optimized structure of the front axle under three typical working conditions was carried out to verify the correctness of the model.Finally,the fatigue tool module of ANSYS Workbench was used to analyze the fatigue life of the front axle under the optimized emergency conditions,and the feasibility of the model was verified.The analysis data shows that the design of the front axle components still has a lot of potential for lightweighting,and the weight of the front axle can be reduced by 6.73%through optimization,and the performance of the front axle can also meet the needs of use.The research conclusionhas a certain reference value for the lightweight design of automobile front axle.展开更多
Green finance,as an important policy to promote high-quality economic development,has become a focus of attention in the academic and policy circles for its promotion of industrial structure optimization.Based on the ...Green finance,as an important policy to promote high-quality economic development,has become a focus of attention in the academic and policy circles for its promotion of industrial structure optimization.Based on the data of six provinces in Central China from 2010 to 2023,this paper constructs a comprehensive index of green finance development by using entropy value method and empirically analyses the impact of green finance on industrial structure optimization.The results show that the level of green finance development has a significant contribution to the optimization of the industrial structure in the central region.Accordingly,this study provides suggestions for deepening green finance reform and accelerating industrial transformation and upgrading.展开更多
Under the background of this era,green finance and the upgrading and optimization of industrial structure have become a hot research topic.The article focuses on Jiangsu Province,carefully explores the impact of green...Under the background of this era,green finance and the upgrading and optimization of industrial structure have become a hot research topic.The article focuses on Jiangsu Province,carefully explores the impact of green financial development on the upgrading and optimization of industrial structure and the real effect,collates and summarizes the theories of green finance and industrial structure at home and abroad,and carefully analyzes the development of green finance in Jiangsu Province,such as the gradual expansion of green credit scale,the characteristics of industrial structure,the change of the proportion of three industries,the development situation of emerging industries and so on.By means of econometrics,an empirical model covering Green Financial Development Indicators and industrial structure optimization indicators is established to do multiple linear regression analysis and stability test.The empirical results show that the development of green finance in Jiangsu plays an obvious positive role in the optimization and upgrading of industrial structure.Green finance is environmental protection,new energy and other green industries are given important financial support,which drives their scale expansion and technological innovation,and makes the industrial structure develop towards a higher level and a more reasonable direction.From this point of view,corresponding proposals are put forward to improve the policy incentive system,add green financial products,and strengthen the construction of green financial market.The purpose is to give better play to the advantages of green finance,accelerate the optimization and upgrading of industrial structure in Jiangsu,and provide theoretical basis and practical guidance for achieving green economic transformation and sustainable development.展开更多
Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight...Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.展开更多
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith...Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.展开更多
Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-neck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraulic s...Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-neck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraulic system. A novel lumped parameter model (LPM) of 3-DOF Helmholtz resonator in hydraulic system is developed which considers the viscous friction loss of hy- draulic fluid in the necks. Applying the Newton's second law of motion to the equivalent mechanical model of the resonator, closed-form expression of transmission loss and resonance frequency is presented. Based on the LPM, an optimal design method which employs rotate vector optimization method (RVOM) is proposed. The purpose of the optimal design is to search the reso- nator's unknown parameters so that its resonance frequencies can coincide with the pump-induced flow pulsation harmonics respectively. The optimal design method is realized to design 3-DOF Helmholtz resonator for a certain type of aviation piston pump hydraulic system. The optimization result shows the feasibility of this method, and the simulation under optimum parame- ters reveals that the LPM can get the same precision as transfer matrix method (TMM).展开更多
Sintering characteristics of common fluxes and sintering blending ores, such as mineralization capacity, liquid generation capacity, consolidation strength, were examined to master the behavior and effect of fluxes in...Sintering characteristics of common fluxes and sintering blending ores, such as mineralization capacity, liquid generation capacity, consolidation strength, were examined to master the behavior and effect of fluxes in sintering. Based on fundamental studies, sinter pot tests were carried out to obtain the principles of optimizing the sinter flux structure. The results showed that strong mineralization capacity, liquid phase generation capacity, and consolidation strength were obtained as sintering blending ores combined with the calcareous flux, while rela-tively poor sintering characteristics were obtained as sintering blending ores combined with the magnesian flux. High reactive quicklime should be used as much as possible in the sintering mixture. It reached better sintering results while quicklime was used instead of limestone and its appropriate proportion in the sintering mixture was around 4wt%. On the premise of ensuring the MgO content, the dolomite amount should be decreased, and the substitution of quicklime for dolomite caused better sintering results. The granularity of serpentine should be re-fined with a proper size smaller than 2 mm. The application of the divided addition method brought the best sintering performance with 30wt% of quicklime and 70wt% of fuel.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos 70801066,60674048,60772053 and 60672142)the National Basic Research Program of China(Grant Nos 2007CB307100 and 2007CB307105)
文摘In this paper we will give the statistical characteristics and general principles of an optimal structure of the Internet, which is a scale-free network. Since the purpose of the Internet is to allow fast and easy communication, the average path length is used to measure the performance of the network, and the number of edges of the network is used as a metric of its; cost. Based on this, the goal of this Internet optimization problem is to obtain the highest performance with the lowest cost. A multi goal optimization problem is proposed to model this problem. By using two empirical formulas of (k) and (l), we are able to find the statistical characteristics of the optimal structure. There is a critical power law exponent ac for the Internet with power law degree distribution, at which the Internet can obtain a relatively good performance with a low cost. We find that this ac is approximately 2.1.
基金partially supported by the Guangxi Sugarcane Science and Technology Project(Guike AA22117005-1)the Hainan Natural Science Foundation Innovative Research Team Project(Grant No.322CXTD521)+2 种基金the Guangxi Innovation-Driven Development Project(Guike AC22080001)the National Natural Science Foundation of China(Grant No.32071916)the Guangxi Sugarcane Science and Technology Project(Grant No.2022AA01010).
文摘To address the challenges of high impurity rate and cane loss rate in mechanized sugarcane harvesting,the internal flow field of the extractor was analyzed through computational fluid dynamics(CFD)simulation,and the structure of the extractor was optimized to improve the harvesting quality.The simulation model was validated by comparing simulated and experimental wind speeds at the extractor outlet,yielding a maximum error of 5.29%and an average error of 4.71%,confirming the model’s accuracy.The analysis revealed that abrupt changes in structural geometry lead to significant airflow vortices within the discharge hood,a backflow phenomenon at the outlet,and additional vortices in the cleaning chamber,all of which ultimately result in high impurity rate and cane loss rate.To address these issues,the extractor’s structure was optimized,the outer contour of the discharge hood was designed as a smooth arc curve,and the lower air inlet of the cleaning chamber was changed from rectangular to circular,which eliminated the vortices and improved airflow uniformity.The impurity rate test showed that when the harvester driving speed was 1 km/h,the impurity rate level before and after optimization was comparable across different rotational speeds.At 2 km/h,the low-speed performance(1250 r/min)was significantly improved,reducing the impurity rate by 21.52%.At 3 km/h,the impurity rate decreased by 19.84%and 28.30%at low and medium speeds(1450 r/min),respectively.The cane loss rate test demonstrated that when the extractor speed was 1250 r/min,the difference before and after optimization was minimal.At 1450 r/min,the cane loss rate decreased significantly,with a maximum decrease of 10.75%.At 1650 r/min,the cane loss rate decreased by 8.78%at most.The optimized extractor significantly reduced the impurity rate and cane loss rate at higher harvester speeds(2-3 km/h),making it suitable for large-scale and high-speed harvesting operations and improving the harvesting efficiency.The research results will help to design and improve the performance of the extractor,thus improving the harvest quality and increasing farmers’income.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10925210,11002081 and 11132005)
文摘The effect of active control imposed at the wall on optimal structures in wall turbulence is studied by using a linear transient growth model.When the detection plane of the control is located in the buffer layer,the influence of the control on the transient growth of large scale motion becomes negligible as Reynolds number increases.However,if the control signal is detected at the plane located in the logarithm region,the transient growth at large scale can be greatly suppressed.New peak values of transient growth resulting from the strong blowing and suction on the wall exist.The study indicates that a proper selection of control imposed on the wall can suppress the large scale motion in the logarithmic region.
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61101117,61171099,and 61362008)the National Key Scientific and Technological Project of China (Grant No.2012ZX03004005002)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant No.BUPT2012RC0112)the Natural Science Foundation of Jiangxi Province,China (Grant No.20132BAB201018)
文摘In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.
基金sponsored by major program of Human and Social Sciences Key Research Center under the Ministry of Education,Theory and Policy Research for the Development of China's Strategic Emerging Industries(Approval No.10JJD790013)National Social Sciences Fund major program"New Tendencies of World Industrial Development and China's Fostering of Strategic Emerging Industries"(Approval No.12&ZD068)major program of Liaoning Social Sciences Planning Fund Research on Strategies for Industrial Structure Optimization of Liaoning Province(Approval No.L10AJL004)
文摘With analysis of producer's and factor supplier's dual optimization motives,this paper developed an optimal nominal output growth rate model that can conduct quantified estimation.Result of estimation of China's optimal industrial structure between1992 and 2009 indicates that optimal nominal output growth rate model has successfully quantified the impact of major events occurring in the process of China's economic operation on the level of deviation between actual industrial structure and optimal industrial structure.Quantitative indicators involved in this model can provide industrial policy instruments for the Chinese government in developing and adjusting industrial structure targets,optimizing resource allocation and advancing industrial structure optimization and upgrade.
基金supported by the Natural Science Foundation of China(Nos.22277019,82150204,22307031,22377023,22077143,and 82003594)Key Project of Guangdong Natural Science Foundation(No.2016A030311033)+2 种基金Fundamental Research Funds for Hainan University(Nos.KYQD(ZR)-21031,KYQD(ZR)-21108,KYQD(ZR)-23003,and XTCX2022JKA01)Guangdong Provincial Key Laboratory of Construction Foundation(No.2023B1212060022)Science Foundation of Hainan Province(Nos.KJRC2023B10,824YXQN420,and 324MS018)。
文摘Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease and its incidence rate is rapidly rising.However,effective therapies for the treatment of IPF are still lacking.Phosphodiesterase 4(PDE4)inhibitors were reported to be potential anti-fibrotic agents.Herein,structure-based hit-to-lead optimization of natural isoaurostatin(8.98μmol/L)resulted in several potent inhibitors of PDE4 with half maximal inhibitory concentration(IC_(50))values ranging from 35 nmol/L to 126 nmol/L.Co-crystal structures revealed that isoaurostatin compounds exhibited different binding patterns from the classic PDE4 inhibitor rolipram and the analogues would favor to be Z configurations other than the corresponding E isomers.Finally,lead 2–9 showed remarkable in vitro/in vivo anti-fibrotic effects indicating its potential as a novel anti-IPF agent.
基金supported by Scientific Research Project of Guangdong Provincial Department of Education(2024KQNCX152).
文摘Flow velocity uniformity of the microchannel plate is a major factor affecting the performance of microchannel devices.In order to improve the velocity distribution uniformity of the microchannel plate,we designed two new microchannel structures:V-type and A-type.The effects of various structural parameters of the manifolds on the velocity distribution are reported.The V-type and A-type microchannel plates had a more uniform velocity distribution compared to the Z-type microchannel plate.The final result showed that it is beneficial for the V-type microchannel plate to obtain a more uniform velocity distribution when the manifold structure parameters are X_(in)=-1,X_(out)=0,Y_(in)=10,Y_(out)=6,Hin=4,H_(out)=1,and R=0.5.
基金supported by the Key Laboratory of Petroleum and Natural Gas Equipment,Ministry of Education(No.OGE202303-08)Engineering Technology Research Center for Industrial Internet of Things and Intelligent Sensing,Hubei Province(No.KXZ 202203).
文摘The beam pumping unit(BPU)remains the most stable and reliable equipment for crude oil lifting.Despite its simple four-link mechanism,the structural design of the BPU presents a constrained single-objective optimization problem.Currently,a comprehensive framework for the structural design and optimization of compound balanced BPUs is lacking.Therefore,this study proposes a novel structural design scheme for BPUs,aiming to meet the practical needs of designers and operators by sequentially optimizing both the dynamic characteristics and balance properties of the BPUs.A dynamic model of compound balanced BPU was established based on D'Alembert's principle.The constraints for structural dimensions were formulated based on the actual operational requirements and design experience with BPUs.To optimize the structure,three algorithms were employed:the particle swarm optimization(PSO)algorithm,the genetic algorithm(GA),and the gray wolf optimization(GWO)algorithm.Each newly generated individuals are regulated by constraints to ensure the rationality of the outcomes.Furthermore,the integration of three algorithms ensures the increased likelihood of attaining the global optimal solution.The polished rod acceleration of the optimized structure is significantly reduced,and the dynamic characteristics of the up and down strokes are essentially symmetrical.Additionally,these three algorithms are also applied to the balance optimization of BPUs based on the measured dynamometer card.The calculation results demonstrate that the GWO-based optimization method exhibits excellent robustness in terms of structural optimization by enhancing the operational smoothness of the BPU,as well as in balance optimization by achieving energy conservation.By applying the optimization scheme proposed in this paper,the CYJW7-3-23HF type of BPU was designed,achieving a maximum polished rod acceleration of±0.675 m/s^(2) when operating at a stroke of 6 min^(−1).When deployed in two wells,the root-mean-square(RMS)torque was minimized,reaching values of 7.539 kN·m and 12.921 kN·m,respectively.The proposed design method not only contributes to the personalized customization but also improves the design efficiency of compound balanced BPUs.
文摘The optimization of civil engineering structures is critical for enhancing structural performance and material efficiency in engineering applications.Structural optimization approaches seek to determine the optimal design,by considering material performance,cost,and structural safety.The design approaches aim to reduce the built environment’s energy use and carbon emissions.This comprehensive review examines optimization techniques,including size,shape,topology,and multi-objective approaches,by integrating these methodologies.The trends and advancements that contribute to developing more efficient,cost-effective,and reliable structural designs were identified.The review also discusses emerging technologies,such as machine learning applications with different optimization techniques.Optimization of truss,frame,tensegrity,reinforced concrete,origami,pantographic,and adaptive structures are covered and discussed.Optimization techniques are explained,including metaheuristics,genetic algorithm,particle swarm,ant-colony,harmony search algorithm,and their applications with mentioned structure types.Linear and non-linear structures,including geometric and material nonlinearity,are distinguished.The role of optimization in active structures,structural design,seismic design,form-finding,and structural control is taken into account,and the most recent techniques and advancements are mentioned.
基金supported by the Yuxiu Innovation Project of NCUT(Grant No.2024NCUTYXCX211).
文摘Purpose–This paper aims to provide a comprehensive analysis of the strategic adjustments in China’s transportation structure,with a particular focus on the pivotal role of railway freight and its integration into the modern logistics system.It seeks to address the need for a more nuanced understanding of the“road to rail”policy,emphasizing the importance of intermodal collaboration and service of fragmented market demands.Design/methodology/approach–The study employs a transport economics perspective to evaluate the achievements and shortcomings of China’s transportation structure optimization.It bases its assessment of the current state of railway freight logistics,multi-modal transportation and the broader implications for the transportation service market on data analysis.The methodology includes a review of existing policies,an examination of industry practices and a comparative analysis with global trends in railway logistics.Findings–The research underscores the importance of focusing on the development of non-bulk materials,noting the insufficiency in the development of China’s rail multi-modal transportation and highlighting the instructive value of successful cases in open-top container road-rail intermodal transportation.The study posits that the railway sector must enhance cooperation with other market entities,aligning with the lead enterprises in the logistics chain that are characterized by speed,high value and strong coordination capabilities,in order to better serve the transportation market.This approach moves away from a reliance on the railway’s own capabilities alone.Originality/value–This paper offers original insights into the transformation of railway freight in China,contributing to the body of knowledge on transportation economics and logistics.It provides valuable recommendations for policymakers and industry practitioners,emphasizing the strategic importance of railway logistics in the context of China’s economic development and intense competition in the supply chain.The value of the article lies in its comprehensive understanding of the complexities involved in the adjustment of transportation structures,providing direction for the market-oriented reform of China’s railway freight sector.
基金funded by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.72221002)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060200)National Natural Science Foundation of Youth Project(Grant No.72303087).
文摘In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure and analyzing its spatial layout with consideration of natural and socio-economic factors.Herein,we proposed a framework for addressing this issue.In this framework,the NSGA-II algorithm was used to construct the multi-objective optimization model of crop planting structures with consideration of water and energy consumption,greenhouse gas(GHG)emissions,economic benefits,as well as food,land,and water security constraints,while the model for planting spatial layout optimization was established with consideration of crop suitability using the MaxEnt model and the improved Hungarian algorithm.This framework was further applied in the Black Soil Region of Northeast China(BSRNC)for analyzing optimized crop planting structures and spatial layouts of three main crops(rice,maize,and soybean)under various scenarios.This study showed that the sown area of rice in the BSRNC decreased by up to 40.73%and 35.30%in the environmental priority scenario and economic-environmental balance scenario,respectively,whereas that of soybean increased by up to 112.44%and 63.31%,respectively.In the economic priority scenario,the sown area of rice increased by up to 93.98%.Expanding the sown area of soybean was effective in reducing GHG emissions.On the contrary,rice production led to greater environmental costs though it provided higher economic returns.Among the three crops,maize exhibited an advantage in balancing environmental and economic benefits.Hegang-Jixi area in the northeast of the BSRNC was identified as the key area with the most intense crop planting transfer among different scenarios.Overall,this framework provides a new methodology for optimizing crop planting structures and spatial layouts with con-sideration of the nexus of various factors.Moreover,the case study demonstrates the applicability and expansion potential of the framework in the fields of sustainable agricultural development and food security assurance.
文摘In this paper,the front axle of a certain model is taken as the research object,and the stress and deformation of the frontaxle under three typical working conditions are analyzed by finite element technology.Based on the simulation results,the 3D model of the front axle was optimized,and the finite element analysis of the optimized structure of the front axle under three typical working conditions was carried out to verify the correctness of the model.Finally,the fatigue tool module of ANSYS Workbench was used to analyze the fatigue life of the front axle under the optimized emergency conditions,and the feasibility of the model was verified.The analysis data shows that the design of the front axle components still has a lot of potential for lightweighting,and the weight of the front axle can be reduced by 6.73%through optimization,and the performance of the front axle can also meet the needs of use.The research conclusionhas a certain reference value for the lightweight design of automobile front axle.
基金Project of Hunan Federation of Social Sciences,“Research on the Coupling Coordination Relationship between Green Finance and Industrial Structure Optimization in Hunan Province”(Project No.:XSP2023GLC027)。
文摘Green finance,as an important policy to promote high-quality economic development,has become a focus of attention in the academic and policy circles for its promotion of industrial structure optimization.Based on the data of six provinces in Central China from 2010 to 2023,this paper constructs a comprehensive index of green finance development by using entropy value method and empirically analyses the impact of green finance on industrial structure optimization.The results show that the level of green finance development has a significant contribution to the optimization of the industrial structure in the central region.Accordingly,this study provides suggestions for deepening green finance reform and accelerating industrial transformation and upgrading.
基金The Impact of Digital Economy on Green Development Efficiency.2025 Nanjing University of Science and Technology Zijin College Campus Level Scientific Research Project(Project No.:2025ZXSK0401011)。
文摘Under the background of this era,green finance and the upgrading and optimization of industrial structure have become a hot research topic.The article focuses on Jiangsu Province,carefully explores the impact of green financial development on the upgrading and optimization of industrial structure and the real effect,collates and summarizes the theories of green finance and industrial structure at home and abroad,and carefully analyzes the development of green finance in Jiangsu Province,such as the gradual expansion of green credit scale,the characteristics of industrial structure,the change of the proportion of three industries,the development situation of emerging industries and so on.By means of econometrics,an empirical model covering Green Financial Development Indicators and industrial structure optimization indicators is established to do multiple linear regression analysis and stability test.The empirical results show that the development of green finance in Jiangsu plays an obvious positive role in the optimization and upgrading of industrial structure.Green finance is environmental protection,new energy and other green industries are given important financial support,which drives their scale expansion and technological innovation,and makes the industrial structure develop towards a higher level and a more reasonable direction.From this point of view,corresponding proposals are put forward to improve the policy incentive system,add green financial products,and strengthen the construction of green financial market.The purpose is to give better play to the advantages of green finance,accelerate the optimization and upgrading of industrial structure in Jiangsu,and provide theoretical basis and practical guidance for achieving green economic transformation and sustainable development.
文摘Build-up panels for the commercial aircraft fuselage subjected to the axial compression load are studied by both experimental and theoretical methods.An integral panel is designed with the same overall size and weight as the build-up structure,and finite element models(FEMs)of these two panels are established.Experimental results of build-up panels agree well with the FEM results with the nonliearity and the large deformation,so FEMs are validated.FEM calculation results of these two panels indicate that the failure mode of the integral panel is different from that of the build-up panel,and the failure load increases by 18.4% up to post-buckling.Furthermore,the integral structure is optimized by using the multi-island genetic algorithm and the sequential quadratic programming.Compared with the initial design,the optimal mass is reduced by 8.7% and the strength is unchanged.
基金supported by the National Natural Science Foundation of China(7110111671271170)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0475)the Basic Research Foundation of NPU(JC20120228)
文摘Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
基金National Science Fund for Distinguished Young Scholars (50825502)
文摘Three degrees of freedom (3-DOF) Helmholtz resonator which consists of three cylindrical necks and cavities connected in series (neck-cavity-neck-cavity-neck-cavity) is suitable to reduce flow pulsation in hydraulic system. A novel lumped parameter model (LPM) of 3-DOF Helmholtz resonator in hydraulic system is developed which considers the viscous friction loss of hy- draulic fluid in the necks. Applying the Newton's second law of motion to the equivalent mechanical model of the resonator, closed-form expression of transmission loss and resonance frequency is presented. Based on the LPM, an optimal design method which employs rotate vector optimization method (RVOM) is proposed. The purpose of the optimal design is to search the reso- nator's unknown parameters so that its resonance frequencies can coincide with the pump-induced flow pulsation harmonics respectively. The optimal design method is realized to design 3-DOF Helmholtz resonator for a certain type of aviation piston pump hydraulic system. The optimization result shows the feasibility of this method, and the simulation under optimum parame- ters reveals that the LPM can get the same precision as transfer matrix method (TMM).
文摘Sintering characteristics of common fluxes and sintering blending ores, such as mineralization capacity, liquid generation capacity, consolidation strength, were examined to master the behavior and effect of fluxes in sintering. Based on fundamental studies, sinter pot tests were carried out to obtain the principles of optimizing the sinter flux structure. The results showed that strong mineralization capacity, liquid phase generation capacity, and consolidation strength were obtained as sintering blending ores combined with the calcareous flux, while rela-tively poor sintering characteristics were obtained as sintering blending ores combined with the magnesian flux. High reactive quicklime should be used as much as possible in the sintering mixture. It reached better sintering results while quicklime was used instead of limestone and its appropriate proportion in the sintering mixture was around 4wt%. On the premise of ensuring the MgO content, the dolomite amount should be decreased, and the substitution of quicklime for dolomite caused better sintering results. The granularity of serpentine should be re-fined with a proper size smaller than 2 mm. The application of the divided addition method brought the best sintering performance with 30wt% of quicklime and 70wt% of fuel.