Experimentally, the best design gives estimates of the desired effects and contrasts with maximum precision. Efficiency as a discriminating factor enables comparison of designs. The goal of Response Surface Methodolog...Experimentally, the best design gives estimates of the desired effects and contrasts with maximum precision. Efficiency as a discriminating factor enables comparison of designs. The goal of Response Surface Methodology (RSM) is the determination of the best settings of the in-put variables for a maximum (or a minimum) response within a region of interest, R. This calls for fitting a model that adequately represents the mean response since such a model, is then used to locate the optimum. D-, A-, E- and T-Optimal designs of a rotatable design of degree two in four dimensions constructed using balanced incomplete block designs (BIBD) when the number of replications is less than three times the number of pairs of treatments occur together in the design and their relative efficiencies to general designs are presented. D-optimal design had 88 runs after replicating the factorial part twice and the axial part thrice with an optimal variance of 0.6965612 giving an efficiency of 97.7% while for A- and T-optimal designs they are formed with 112 runs each obtained by replicating the factorial part two times and axial part six times. Their optimal variances are 0.05798174 and 1.29828 respectively, with efficiency of 71.8% for A-optimal and 87.5% for T-optimal design. E-optimal design was found to be the most efficient design with an only 32 runs comprising only of the factorial part and with an optimal variance of 0.4182000, attaining an efficiency of approximately 1%. This study proposes the adoption of the E-optimal design in estimating the parameters of a rotatable second-order degree model constructed using BIBD for less costs and time saving.展开更多
The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel...The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.展开更多
Underwater jet propulsion bio-inspired robots have typically been designed based on soft-bodied organisms, exhibiting relatively limited forms of locomotion. Scallop, a bivalve organism capable of jet propulsion, hold...Underwater jet propulsion bio-inspired robots have typically been designed based on soft-bodied organisms, exhibiting relatively limited forms of locomotion. Scallop, a bivalve organism capable of jet propulsion, holds significant importance in the study of underwater motion mechanisms. In this study, we present theoretical fluid mechanics analysis and modeling of the three distinct motion stages of scallops, providing parameterized descriptions of scallop locomotion mechanisms. Accordingly, three-stage adaptive motion control for the scallop robot and model-based robot configuration optimization design were achieved. An experimental platform and a robot prototype were built to validate the accuracy of the motion model and the effectiveness of the control strategy. Additionally, based on the models, future optimization directions for the robot are proposed.展开更多
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is...Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design.展开更多
The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple st...The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple structure and user-friendly operation,PAT holds significant promise for application in industrial waste energy recovery systems.This paper reviews recent advancements in this field,with a focus on pump type selection,performance prediction,and optimization design.First,the advantages of various prototype pumps,including centrifugal,axial-flow,mixed-flow,screw,and plunger pumps,are examined in specific application scenarios while analyzing their suitability for turbine operation.Next,performance prediction techniques for PATs are discussed,encompassing theoretical calculations,numerical simulations,and experimental testing.Special emphasis is placed on the crucial role of Computational Fluid Dynamics(CFD)and internal flow field testing technologies in analyzing PAT internal flow characteristics.Additionally,the impact of multi-objective optimization methods and the application of advanced materials on PAT performance enhancement is addressed.Finally,based on current research findings and existing technical challenges,this review also indicates future development directions;in particular,four key breakthrough areas are identified:advanced materials,innovative design methodologies,internal flow diagnostics,and in-depth analysis of critical components.展开更多
To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load ...To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.展开更多
With the development of CMOS and MEMS technologies, the implementation of a large number of wireless distributed micro-sensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad...With the development of CMOS and MEMS technologies, the implementation of a large number of wireless distributed micro-sensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. For better understanding of the design tradeoffs of wireless sensor network (WSN), a more accurate energy model for wireless sensor node is proposed, and an optimal design method of energy efficient wireless sensor node is described as well. Different from power models ever shown which assume the power cost of each component in WSN node is constant, the new one takes into account the energy dissipation of circuits in practical physical layer. It shows that there are some parameters, such as data rate, carrier frequency, bandwidth, Tsw, etc, which have a significant effect on the WSN node energy consumption per useful bit (EPUB). For a given quality specification, how energy consumption can be reduced by adjusting one or more of these parameters is shown.展开更多
A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to ...A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.展开更多
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
A systemic investigation was done on the chemistry and crystal structure of boundary phases in sintered Ce9Nd21FebalB1 (wt%) magnets. Ce2Fe14B is believed to be more soluble in the rare-earth (RE)-rich liquid phas...A systemic investigation was done on the chemistry and crystal structure of boundary phases in sintered Ce9Nd21FebalB1 (wt%) magnets. Ce2Fe14B is believed to be more soluble in the rare-earth (RE)-rich liquid phase during the sintering process. Thus, the grain size and oxygen content were controlled via low-temperature sintering, resulting in high coercivity and maximum energy products. In addition, Ce formed massive agglomerations at the triple-point junctions, as confirmed by elemental mapping results. Transmission electron micros- copy (TEM) images indicated the presence of (Ce,Nd)Ox phases at grain boundaries. By controlling the composition and optimizing the preparation process, we successfully obtained Ce9Nd21FebalBx sintered magnets; the prepared magnets exhibited a residual induction, coerciv- ity, and energy product of 1.353 T, 759 kA/m, and 342 kJ/m3, respectively.展开更多
To solve the problem for lacking a special mechanical transmission that could provide multiple outputs with high transmission efficiency and good lubrication in the modem industrial, a novel worm gear, named end face ...To solve the problem for lacking a special mechanical transmission that could provide multiple outputs with high transmission efficiency and good lubrication in the modem industrial, a novel worm gear, named end face engagement worm gear, with multiple worm-wheel meshing is proposed for the first time. The essential parameters for the worm gear are optimized to enhance lubrication and meshing properties. Moreover, analysis of variance(ANOVA) is applied to determine the optimum levels and to determine the influence of parameters. The ANOVA results show that the novel end face engagement worm gear with multiple worm wheels provides high lubrication(the lubrication angle is more than 89~) and meshing performance(the induce normal curvature is less than 0.0002 mm '). The interaction between center distance and roller slant distance most strongly influences the lubrication angle(contributed 51.6%), followed by the parameters of center distance(contributed 25.0%), roller slant distance(contributed 16.4%), tooth angle of gear, gear ratio, and roller radius. In addition, roller radius most strongly influences the induced normal curvature(contributed 39.4%), followed by roller slant distance(contributed 15.2%), tooth angle of the gear(contributed 9.0%), center distance, and gear ratio. The proposed worm gear helps to enrich the no-backlash high precision worm drive and the optimal design method can provide a useful reference on performance improvement of other worm gear.展开更多
For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT desig...For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT design on non-rectangle test region, the present method is only focused on non-rectangle test region with simple boundary, and the optimization algorithm is based on experience which can not ensure to obtain the optimal plan. In this paper, considering the linear-extreme value model and the optimization goal to minimize the variance of lifetime estimate under normal stress, the optimal design method of two-stress type-I censored CSALT plan on general non-rectangular test region is proposed. First, two properties of optimal test plans are proved and the relationship of all the optimal test plans is determined analytically. Then, on the basis of the two properties, the optimal problem is simplified and the optimal design method of two-stress CSALT plan on general non-rectangular test region is proposed. Finally, a numerical example is used to illustrate the feasibility and effectiveness of the method, The result shows that the proposed method could obtain the optimal test plan on non-rectangular test regions with arbitrary boundaries. This research provides the theory and method for two-stress optimal CSALT planning on non-rectangular test regions.展开更多
A safety mechanism capable of moving at will within the range of its whole link lengths is designed based on the link space. Sixteen extreme poses are obtained in a Stewart platform. The singular points of the extreme...A safety mechanism capable of moving at will within the range of its whole link lengths is designed based on the link space. Sixteen extreme poses are obtained in a Stewart platform. The singular points of the extreme poses are solved by using homotopy method as well as the judgment condition of singular points, and thereby the maximum link lengths are achieved. The rotation angles of joints and the distances between two neighboring links are analyzed in a calculation example in which that the mechanism moves among the extreme poses is assumed. Then an algorithm to test the safety mechanism is presented taking the constraint conditions into account. A safety mechanism having optimal properties of global movement is worked out by optimizing all structural parameters through minimizing the average condition number of extreme poses.展开更多
The design method of a 6-axis force robot's transducer based on the Stewartplatform is detailed. For this purpose, the sensitivity isotropy evaluation criteria of thetransducer are defined, and by the aid of compu...The design method of a 6-axis force robot's transducer based on the Stewartplatform is detailed. For this purpose, the sensitivity isotropy evaluation criteria of thetransducer are defined, and by the aid of computer, the relationships between the criteria and theparameters of all the transducers based on the Stewart platform are investigated within thegeometric model of the solution space, which can provide the theoretical background for the optimalconstruction design of the 6-axis force transducer related to the sensitivity isotropy.展开更多
Traditionally, the use of a tuned mass damper (TMD) is to improve the surviability of the primary structure under extraordinary loading environment while the design loading condition is described by either a harmonic ...Traditionally, the use of a tuned mass damper (TMD) is to improve the surviability of the primary structure under extraordinary loading environment while the design loading condition is described by either a harmonic function or a stationary random process that can be fully characterized by a power spectral density (PSD) function. Aiming at prolonging the fatigue life of an offshore platform, this study considers an optimal design of TMD for the platform under long-term nonstationary loading due to long-term random sea waves characterized by a probabilistic power spectral density (PPSD) function In principle, a PPSD could be derived based on numerous ordinary PSD functions; and each of them is treated as realization of the corresponding PPSD. This study provides a theoretical development for the optimal TMD design by minimizing the cost function to be the mean square value of the expected long term response. A numerical example is presented to illustrate the developed design procedure.展开更多
Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow dr...Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow drainage canal.Therefore,how to design the appropriate shape and sizes of the cross-section so that the drainage canal can have the optimal drainage capacity is very important and few researched at home and abroad.This study was conducted to analyze the hydraulic condition of a Trapezoid-V shaped drainage canal and optimize its cross-section.By assuming characteristic sizes of the cross-section,the paper deduced the configuration parameter of the cross-section of a Trapezoid-V shaped debris flow drainage canal.By theory analysis,it indicates that the optimal configuration parameter is only related to the side slope coefficient and the bottom transverse slope coefficient.For this study,the Heishui Gully,a first-order tributary of the lower Jinsha River,was used as an example to design the optimal cross-section of the drainage canal of debris flow.展开更多
A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably m...A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.展开更多
Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed f...Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.展开更多
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro...Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.展开更多
The structure parameters of 6-degree of freedom(DOF)vibration isolation platform have a significant effect on its performance.To make the designed vibration isolation platform perform well,non-dominanted sorting genet...The structure parameters of 6-degree of freedom(DOF)vibration isolation platform have a significant effect on its performance.To make the designed vibration isolation platform perform well,non-dominanted sorting genetic algorithm version II(NSGA-II)was applied to optimize its structure based on the transfer matrix method for multibody systems.Firstly,the Jacobian matrix of 6-DOF vibration isolation platform was solved based on kinematics.Secondly,the transfer equation of 6-DOF vibration isolation system was established by the linear transfer matrix method for multibody systems.And the formula of its natural frequency was derived according to the boundary conditions of the system.Thirdly,the manipulability index was constructed based on a dimensionless Jacobian matrix.And a new performance index function was established considering the influence of dynamic isotropic and legs mass.Fourthly,genetic algorithm(GA)and NSGA-II were used to optimize the structure of the 6-DOF vibration isolation platform under the same conditions,respectively.It showed that NSGA-II had higher optimization efficiency,better calculation accuracy and shorter optimization time than that of GA.Finally,NSGA-II was adopted for multi-objective optimization design of 6-DOF vibration isolation platform based on the constraint conditions.Optimal Pareto solutions were obtained,which provides structural parameters for subsequent design work.Therefore,the proposed optimization method and the performance index in this paper provide a theoretical basis for the optimal design of relevant vibration isolation mechanism.展开更多
文摘Experimentally, the best design gives estimates of the desired effects and contrasts with maximum precision. Efficiency as a discriminating factor enables comparison of designs. The goal of Response Surface Methodology (RSM) is the determination of the best settings of the in-put variables for a maximum (or a minimum) response within a region of interest, R. This calls for fitting a model that adequately represents the mean response since such a model, is then used to locate the optimum. D-, A-, E- and T-Optimal designs of a rotatable design of degree two in four dimensions constructed using balanced incomplete block designs (BIBD) when the number of replications is less than three times the number of pairs of treatments occur together in the design and their relative efficiencies to general designs are presented. D-optimal design had 88 runs after replicating the factorial part twice and the axial part thrice with an optimal variance of 0.6965612 giving an efficiency of 97.7% while for A- and T-optimal designs they are formed with 112 runs each obtained by replicating the factorial part two times and axial part six times. Their optimal variances are 0.05798174 and 1.29828 respectively, with efficiency of 71.8% for A-optimal and 87.5% for T-optimal design. E-optimal design was found to be the most efficient design with an only 32 runs comprising only of the factorial part and with an optimal variance of 0.4182000, attaining an efficiency of approximately 1%. This study proposes the adoption of the E-optimal design in estimating the parameters of a rotatable second-order degree model constructed using BIBD for less costs and time saving.
基金supported by the Education and Teaching Research Project of Universities in Fujian Province(FBJY20230167).
文摘The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters.
基金supported by the Fundamental Research Funds for the Central Universities(No.30922010719).
文摘Underwater jet propulsion bio-inspired robots have typically been designed based on soft-bodied organisms, exhibiting relatively limited forms of locomotion. Scallop, a bivalve organism capable of jet propulsion, holds significant importance in the study of underwater motion mechanisms. In this study, we present theoretical fluid mechanics analysis and modeling of the three distinct motion stages of scallops, providing parameterized descriptions of scallop locomotion mechanisms. Accordingly, three-stage adaptive motion control for the scallop robot and model-based robot configuration optimization design were achieved. An experimental platform and a robot prototype were built to validate the accuracy of the motion model and the effectiveness of the control strategy. Additionally, based on the models, future optimization directions for the robot are proposed.
基金National Natural Science Foundation of China under Grant No.52278490。
文摘Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design.
基金supported by Science and Technology Project of Quzhou(Nos.2023K256,2023NC08,2022K41)Research Grants Program of Department of Education of Zhejiang Province(Nos.Y202455709,Y202456243)Hunan Province Key Field R&D Plan Project(No.2022GK2068).
文摘The reverse operation of existing centrifugal pumps,commonly referred to as“Pump as Turbine”(PAT),is a key approach for recovering liquid pressure energy.As a type of hydraulic machinery characterized by a simple structure and user-friendly operation,PAT holds significant promise for application in industrial waste energy recovery systems.This paper reviews recent advancements in this field,with a focus on pump type selection,performance prediction,and optimization design.First,the advantages of various prototype pumps,including centrifugal,axial-flow,mixed-flow,screw,and plunger pumps,are examined in specific application scenarios while analyzing their suitability for turbine operation.Next,performance prediction techniques for PATs are discussed,encompassing theoretical calculations,numerical simulations,and experimental testing.Special emphasis is placed on the crucial role of Computational Fluid Dynamics(CFD)and internal flow field testing technologies in analyzing PAT internal flow characteristics.Additionally,the impact of multi-objective optimization methods and the application of advanced materials on PAT performance enhancement is addressed.Finally,based on current research findings and existing technical challenges,this review also indicates future development directions;in particular,four key breakthrough areas are identified:advanced materials,innovative design methodologies,internal flow diagnostics,and in-depth analysis of critical components.
文摘To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.
基金the National High-Tech Research and Development Plan of China (2006AA01Z223)the China Next Generation Internet (CNGI) Plan (2005-2137).
文摘With the development of CMOS and MEMS technologies, the implementation of a large number of wireless distributed micro-sensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. For better understanding of the design tradeoffs of wireless sensor network (WSN), a more accurate energy model for wireless sensor node is proposed, and an optimal design method of energy efficient wireless sensor node is described as well. Different from power models ever shown which assume the power cost of each component in WSN node is constant, the new one takes into account the energy dissipation of circuits in practical physical layer. It shows that there are some parameters, such as data rate, carrier frequency, bandwidth, Tsw, etc, which have a significant effect on the WSN node energy consumption per useful bit (EPUB). For a given quality specification, how energy consumption can be reduced by adjusting one or more of these parameters is shown.
基金Projects(51275235, 50975135) supported by the National Natural Science Foundation of ChinaProject(U0934004) supported by the Natural Science Foundation of Guangdong Province, ChinaProject(2011CB707602) supported by the National Basic Research Program of China
文摘A new method for optimizing a butterfly-shaped linear ultrasonic motor was proposed to maximize its mechanical output. The finite element analysis technology and response surface methodology were combined together to realize the optimal design of the butterfly-shaped linear ultrasonic motor. First, the operation principle of the motor was introduced. Second, the finite element parameterized model of the stator of the motor was built using ANSYS parametric design language and some structure parameters of the stator were selected as design variables. Third, the sample points were selected in design variable space using latin hypercube Design. Through modal analysis and harmonic response analysis of the stator based on these sample points, the target responses were obtained. These sample points and response values were combined together to build a response surface model. Finally, the simplex method was used to find the optimal solution. The experimental results showed that many aspects of the design requirements of the butterfly-shaped linear ultrasonic motor have been fulfilled. The prototype motor fabricated based on the optimal design result exhibited considerably high dynamic performance, such as no-load speed of 873 ram/s, maximal thrust of 27.5 N, maximal efficiency of 43%, and thrust-weight ratio of 45.8.
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
基金financially supported by the National Natural Science Foundation of China (No. 51171048)the National High Technology Research and Development Program of China (No. 2014CB643701)the National Science and Technology Support Program of China (No. 2012BAE02B01)
文摘A systemic investigation was done on the chemistry and crystal structure of boundary phases in sintered Ce9Nd21FebalB1 (wt%) magnets. Ce2Fe14B is believed to be more soluble in the rare-earth (RE)-rich liquid phase during the sintering process. Thus, the grain size and oxygen content were controlled via low-temperature sintering, resulting in high coercivity and maximum energy products. In addition, Ce formed massive agglomerations at the triple-point junctions, as confirmed by elemental mapping results. Transmission electron micros- copy (TEM) images indicated the presence of (Ce,Nd)Ox phases at grain boundaries. By controlling the composition and optimizing the preparation process, we successfully obtained Ce9Nd21FebalBx sintered magnets; the prepared magnets exhibited a residual induction, coerciv- ity, and energy product of 1.353 T, 759 kA/m, and 342 kJ/m3, respectively.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305356,51575456)Spring Sunshine Plan of Ministry of Education of China(Grant No.14202505)Talent Introduction of Xihua University,China(Grant No.Z1220217)
文摘To solve the problem for lacking a special mechanical transmission that could provide multiple outputs with high transmission efficiency and good lubrication in the modem industrial, a novel worm gear, named end face engagement worm gear, with multiple worm-wheel meshing is proposed for the first time. The essential parameters for the worm gear are optimized to enhance lubrication and meshing properties. Moreover, analysis of variance(ANOVA) is applied to determine the optimum levels and to determine the influence of parameters. The ANOVA results show that the novel end face engagement worm gear with multiple worm wheels provides high lubrication(the lubrication angle is more than 89~) and meshing performance(the induce normal curvature is less than 0.0002 mm '). The interaction between center distance and roller slant distance most strongly influences the lubrication angle(contributed 51.6%), followed by the parameters of center distance(contributed 25.0%), roller slant distance(contributed 16.4%), tooth angle of gear, gear ratio, and roller radius. In addition, roller radius most strongly influences the induced normal curvature(contributed 39.4%), followed by roller slant distance(contributed 15.2%), tooth angle of the gear(contributed 9.0%), center distance, and gear ratio. The proposed worm gear helps to enrich the no-backlash high precision worm drive and the optimal design method can provide a useful reference on performance improvement of other worm gear.
基金supported by National Natural Science Foundation of China(Grant Nos. 50935002, 51075370, 51105341)National Hi-tech Research and Development Program of China(863 Program, Grant No. 2007AA04Z409)+1 种基金the Technology Foundation of National Defense ProgramZhejiang Provincial Natural Science Foundation of China (Grant Nos. Y1100777, Y1080762)
文摘For optimal design of constant stress accelerated life test(CSALT) with two-stress, if the stresses could not reach the highest levels simultaneously, the test region becomes non-rectangular. For optimal CSALT design on non-rectangle test region, the present method is only focused on non-rectangle test region with simple boundary, and the optimization algorithm is based on experience which can not ensure to obtain the optimal plan. In this paper, considering the linear-extreme value model and the optimization goal to minimize the variance of lifetime estimate under normal stress, the optimal design method of two-stress type-I censored CSALT plan on general non-rectangular test region is proposed. First, two properties of optimal test plans are proved and the relationship of all the optimal test plans is determined analytically. Then, on the basis of the two properties, the optimal problem is simplified and the optimal design method of two-stress CSALT plan on general non-rectangular test region is proposed. Finally, a numerical example is used to illustrate the feasibility and effectiveness of the method, The result shows that the proposed method could obtain the optimal test plan on non-rectangular test regions with arbitrary boundaries. This research provides the theory and method for two-stress optimal CSALT planning on non-rectangular test regions.
文摘A safety mechanism capable of moving at will within the range of its whole link lengths is designed based on the link space. Sixteen extreme poses are obtained in a Stewart platform. The singular points of the extreme poses are solved by using homotopy method as well as the judgment condition of singular points, and thereby the maximum link lengths are achieved. The rotation angles of joints and the distances between two neighboring links are analyzed in a calculation example in which that the mechanism moves among the extreme poses is assumed. Then an algorithm to test the safety mechanism is presented taking the constraint conditions into account. A safety mechanism having optimal properties of global movement is worked out by optimizing all structural parameters through minimizing the average condition number of extreme poses.
基金This project is supported by National 863 plan(No.512-9804-02)Robotics Laboratory,Chinese Academy of Sciences Foundation, China
文摘The design method of a 6-axis force robot's transducer based on the Stewartplatform is detailed. For this purpose, the sensitivity isotropy evaluation criteria of thetransducer are defined, and by the aid of computer, the relationships between the criteria and theparameters of all the transducers based on the Stewart platform are investigated within thegeometric model of the solution space, which can provide the theoretical background for the optimalconstruction design of the 6-axis force transducer related to the sensitivity isotropy.
基金JSPS RONPAKU program of JapanPh.D.education fund from Ministry of Education of China
文摘Traditionally, the use of a tuned mass damper (TMD) is to improve the surviability of the primary structure under extraordinary loading environment while the design loading condition is described by either a harmonic function or a stationary random process that can be fully characterized by a power spectral density (PSD) function. Aiming at prolonging the fatigue life of an offshore platform, this study considers an optimal design of TMD for the platform under long-term nonstationary loading due to long-term random sea waves characterized by a probabilistic power spectral density (PPSD) function In principle, a PPSD could be derived based on numerous ordinary PSD functions; and each of them is treated as realization of the corresponding PPSD. This study provides a theoretical development for the optimal TMD design by minimizing the cost function to be the mean square value of the expected long term response. A numerical example is presented to illustrate the developed design procedure.
基金supported by the National Science and Technology Supporting Plan(Grant No.2009BAK56B05)Key Project of Chinese National Programs for Fundamental Research and Development(973 Program)(Grant No.2008CB425803)
文摘Debris flow drainage canal is one of the most widely used engineering measures to prevent and manage debris flow hazards.The shape and the sizes of the cross-section are important parameters when design debris flow drainage canal.Therefore,how to design the appropriate shape and sizes of the cross-section so that the drainage canal can have the optimal drainage capacity is very important and few researched at home and abroad.This study was conducted to analyze the hydraulic condition of a Trapezoid-V shaped drainage canal and optimize its cross-section.By assuming characteristic sizes of the cross-section,the paper deduced the configuration parameter of the cross-section of a Trapezoid-V shaped debris flow drainage canal.By theory analysis,it indicates that the optimal configuration parameter is only related to the side slope coefficient and the bottom transverse slope coefficient.For this study,the Heishui Gully,a first-order tributary of the lower Jinsha River,was used as an example to design the optimal cross-section of the drainage canal of debris flow.
文摘A successful mechanical property data-driven prediction model is the core of the optimal design of hot rolling process for hot-rolled strips. However, the original industrial data, usually unbalanced, are inevitably mixed with fluctuant and abnormal values. Models established on the basis of the data without data processing can cause misleading results, which cannot be used for the optimal design of hot rolling process. Thus, a method of industrial data processing of C-Mn steel was proposed based on the data analysis. The Bayesian neural network was employed to establish the reliable mechanical property prediction models for the optimal design of hot rolling process. By using the multi-objective optimization algorithm and considering the individual requirements of costumers and the constraints of the equipment, the optimal design of hot rolling process was successfully applied to the rolling process design for Q345B steel with 0.017% Nb and 0.046% Ti content removed. The optimal process design results were in good agreement with the industrial trials results, which verify the effectiveness of the optimal design of hot rolling process.
文摘Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.
基金Project(50878111) supported by the National Natural Science Foundation of China
文摘Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.
基金supported by the National Natural Science Foundation of China(Grant 51975298)the Natural Science Foundation of Jiangsu Province(Grant BK20181301)the National Science Foundation of China(Grant 11874303).
文摘The structure parameters of 6-degree of freedom(DOF)vibration isolation platform have a significant effect on its performance.To make the designed vibration isolation platform perform well,non-dominanted sorting genetic algorithm version II(NSGA-II)was applied to optimize its structure based on the transfer matrix method for multibody systems.Firstly,the Jacobian matrix of 6-DOF vibration isolation platform was solved based on kinematics.Secondly,the transfer equation of 6-DOF vibration isolation system was established by the linear transfer matrix method for multibody systems.And the formula of its natural frequency was derived according to the boundary conditions of the system.Thirdly,the manipulability index was constructed based on a dimensionless Jacobian matrix.And a new performance index function was established considering the influence of dynamic isotropic and legs mass.Fourthly,genetic algorithm(GA)and NSGA-II were used to optimize the structure of the 6-DOF vibration isolation platform under the same conditions,respectively.It showed that NSGA-II had higher optimization efficiency,better calculation accuracy and shorter optimization time than that of GA.Finally,NSGA-II was adopted for multi-objective optimization design of 6-DOF vibration isolation platform based on the constraint conditions.Optimal Pareto solutions were obtained,which provides structural parameters for subsequent design work.Therefore,the proposed optimization method and the performance index in this paper provide a theoretical basis for the optimal design of relevant vibration isolation mechanism.