期刊文献+
共找到382篇文章
< 1 2 20 >
每页显示 20 50 100
Modeling and simulation of a reconfigurable multifunctional optical sensor
1
作者 Shaher DWIK Gurusamy SASIKALA 《Optoelectronics Letters》 2025年第4期205-211,共7页
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec... Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC). 展开更多
关键词 RECONFIGURABLE optical sensor alternate operating modes tracking systems MULTIFUNCTIONAL optical element position sensitive device psd sensor PSD
原文传递
Highly sensitive digital optical sensor with large measurement range based on the dual-microring resonator with waveguide-coupled feedback 被引量:3
2
作者 向星烨 王葵如 +3 位作者 苑金辉 晋博源 桑新柱 余重秀 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期284-288,共5页
We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the se... We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case. 展开更多
关键词 optical sensor microring resonator high sensitivity large measurement range
原文传递
A novel Cu(I) complex based organic ultraviolet optical sensor 被引量:2
3
作者 车广波 刘春波 +3 位作者 徐占林 李文连 孔治国 王庆伟 《Optoelectronics Letters》 EI 2009年第1期14-17,共4页
A novel Cu(I) complex with the formula of [Cu(DPEphos)(Dicnq)]BF4(CuDD) was synthesized and characterized by X-ray single crystal diffraction method,in which DPEphos and Dicnq denote bis[2-(diphenylphosphino)phenyl]et... A novel Cu(I) complex with the formula of [Cu(DPEphos)(Dicnq)]BF4(CuDD) was synthesized and characterized by X-ray single crystal diffraction method,in which DPEphos and Dicnq denote bis[2-(diphenylphosphino)phenyl]ether and 6,7-Dicyanodipyrido[2,2-d:2 ,3 -f] quinoxaline,respectively.Organic ultraviolet optical sensor based on photovoltaic diode is fabricated by using CuDD as an electron acceptor and 4,4′,4″-tris-(2-methylphenyl phenylamino) triphenylamine(m-MTDATA) as an electron donor.The sensor is sensit... 展开更多
关键词 Conversion efficiency ETHERS LIGHT Open circuit voltage optical sensors Single crystals
原文传递
Optical sensors based on the NiPc-CoPc composite films deposited by drop casting and under the action of centrifugal force
4
作者 Noshin Fatima Muhammad M Ahmed +2 位作者 Khasan S Karimov Zubair Ahmad Fahmi Fariq Muhammad 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期114-118,共5页
In this study, solution processed composite films of nickel phthalocyanine(NiPc) and cobalt phthalocyanine(CoPc)are deposited by drop casting and under centrifugal force. The films are deposited on surface-type in... In this study, solution processed composite films of nickel phthalocyanine(NiPc) and cobalt phthalocyanine(CoPc)are deposited by drop casting and under centrifugal force. The films are deposited on surface-type inter-digitated silver electrodes on ceramic alumina substrates. The effects of illumination on the impedance and capacitance of the NiPc–CoPc composite samples are investigated. The samples deposited under centrifugal force show better conductivity than the samples deposited by drop casting technique. In terms of impedance and capacitance sensitivities the samples fabricated under centrifugal force are more sensitive than the drop casting samples. The values of impedance sensitivity(Sz)are equal to(-1.83) MΩ·cm^2/mW and(-5.365) MΩ·cm^2/mW for the samples fabricated using drop casting and under centrifugal force, respectively. Similarly, the values of capacitance sensitivity(Sc) are equal to 0.083 pF·cm^2/mW and 0.185 pF·cm~2/mW for the samples fabricated by drop casting and under centrifugal force. The films deposited using the different procedures could potentially be viable for different operational modes(i.e., conductive or capacitive) of the optical sensors. Both experimental and simulated results are discussed. 展开更多
关键词 optical sensors capacitive mode impedance mode centrifugal deposition
原文传递
Design of fan beam optical sensor and its application in mass flow rate measurement of pneumatically conveyed solids
5
作者 李扬 郑莹娜 岳洪伟 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第12期1430-1434,共5页
The fan-beam optical sensor is made up of many semiconductor lasers and detectors fixed around the wall alternately at a cross section of pneumatically conveying pipe. When the sensor works, a scanning light source em... The fan-beam optical sensor is made up of many semiconductor lasers and detectors fixed around the wall alternately at a cross section of pneumatically conveying pipe. When the sensor works, a scanning light source emits a 50° lamellar fan-beam through the gas-solid two phase flow, and the projection data resulting extinction effect of solid particles are detected at the same time. With the projection data, the flow rate mass can be calculated, and then the flow image can be reconstructed. In this paper, the design of the sensor including spatial arrangement of the structural parts, basic principle and measurement sensitivity distribution are introduced. The mathematical measurement model of solid mass flow rate is presented together with the testing results. 展开更多
关键词 optical sensor Fan-beam laser Pneumatic conveyor system Mass flow rate of solids
在线阅读 下载PDF
Artificial Neural Networks as Digital Twins for Whispering Gallery Mode Optical Sensors in Robotics Applications
6
作者 Amir R.ALI Mohamed W.A.RAMADAN 《Photonic Sensors》 2025年第2期45-62,共18页
This paper investigates the use of artificial neural networks(ANNs)as a viable digital twin or alternative to the typical whispering gallery mode(WGM)optical sensors in engineering systems,especially in dynamic enviro... This paper investigates the use of artificial neural networks(ANNs)as a viable digital twin or alternative to the typical whispering gallery mode(WGM)optical sensors in engineering systems,especially in dynamic environments like robotics.Because of its fragility and limited endurance,the WGM sensor which is based on micro-optical resonators is inappropriate in these kinds of situations.In order to address these issues,the paper suggests an ANN that is specifically designed for the system and makes use of the WGM sensor’s high-quality factor(Q-factor).By extending the applicability and endurance to dynamic contexts and reducing fragility problems,the ANN seeks to give high-resolution measurement.In order to minimize post-processing requirements and maintain system robustness,the study goal is for the ANN to function as a representative predictor of the WGM sensor output.The GUCnoid 1.0 humanoid robot is used in the paper as an example to show how the WGM optical sensors may improve humanoid robot performance for a variety of applications.The results of the experiments demonstrate that the sensitivity,precision,and resolution of ANN outputs and actual WGM shifts are equivalent.As a consequence,current obstacles to the widespread use of high-precision sensing in the robotics industry are removed,and the potential of ANNs as virtual substitutes or the digital twin for genuine WGM sensors in robotics systems is validated.So,this paper can be very beneficial not only to the sensing technologies that are used in robotics,which are subjected to the dynamic environments,but also to the industrial automation and human-machine interface. 展开更多
关键词 Whispering gallery mode optical sensors humanoid robots GUCnoid 1.0 artificial neural networks digital twins robotic applications
原文传递
Low-cost optical sensors in electrified lab-on-a-disc platforms:liquid-phase boundary detection and automated diagnostics
7
作者 Vahid Kordzadeh-Kermani Maryam Vahid +3 位作者 Seyed Nezameddin Ashrafizadeh Sergio O.Martinez-Chapa Marc J.Madou Masoud Madadelahi 《Microsystems & Nanoengineering》 2025年第2期449-462,共14页
Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase fl... Centrifugal microfluidic platforms are highly regarded for their potential in multiplexing and automation,as well as their wide range of applications,especially in separating blood plasma and manipulating two-phase flows.However,the need to use stroboscopes or high-speed cameras for monitoring these tasks hinders the extensive use of these platforms in research and commercial settings.In this study,we introduce an innovative and cost-effective strategy for using an array of light-dependent resistors(LDRs)as optical sensors in microfluidic devices,particularly centrifugal platforms.While LDRs are attractive for their potential use as photodetectors,their bulky size frequently restricts their ability to provide high-resolution detection in microfluidic systems.Here,we use specific waveguides to direct light beams from narrow apertures onto the surface of LDRs.We integrated these LDRs into electrified Lab-on-a-Disc(eLOD)devices,with wireless connectivity to smartphones and laptops.This enables many applications,such as droplet/particle counting and velocity measurement,concentration analysis,fluidic interface detection in multiphase flows,real-time monitoring of sample volume on centrifugal platforms,and detection of blood plasma separation as an alternative to costly stroboscope devices,microscopes,and high-speed imaging.We used numerical simulations to evaluate various fluids and scenarios,which include rotation speeds of up to 50 rad/s and a range of droplet sizes.For the testbed,we used the developed eLOD device to analyze red blood cell(RBC)deformability and improve the automated detection of sickle cell anemia by monitoring differences in RBC deformability during centrifugation using the sensors’signals.In addition to sickle cell anemia,this device has the potential to facilitate low-cost automated detection of other medical conditions characterized by altered RBC deformability,such as thalassemia,malaria,and diabetes. 展开更多
关键词 liquid phase boundary detection separating blood plasma low cost optical sensors light dependent resistors automated diagnostics centrifugal microfluidic platforms waveguides electrified lab disc
原文传递
Low-cost prototype for real-time analysis using liquid crystal optical sensors in water quality assessment
8
作者 M.SIMONE SOARES FRANCISCO GAMEIRO +3 位作者 JAN NEDOMA NUNO SANTOS PEDRO L.ALMEIDA CARLOS MARQUES 《Photonics Research》 2025年第2期541-549,共9页
In the food production sector,quickly identifying potential hazards is crucial due to the resilience of many pathogens,which could lead to wasted production results and,more severely,epidemic outbreaks.E.coli monitori... In the food production sector,quickly identifying potential hazards is crucial due to the resilience of many pathogens,which could lead to wasted production results and,more severely,epidemic outbreaks.E.coli monitoring is essential;however,traditional quality control methods in fish farming are often slow and intrusive,thus promoting an increase in fish stress and mortality rates.This paper presents an alternative method by utilizing a prototype inspired by polarized optical microscopy(POM),constructed with a Raspberry Pi microprocessor to assess pixel patterns and calculate analyte levels. 展开更多
关键词 real time analysis pathogen detection polarized optical microscopy pom constructed quality control methods identifying potential hazards liquid crystal optical sensors water quality assessment food production sector
原文传递
Vibration sensor based on stretchable optical fiber and interferometric measurement
9
作者 WU Jia-jun XIE Kang +5 位作者 CAO Lei CAO Xuan LI Zhen-jia ZHAO Guo-shuai HE Jia-cheng TU Guo-jie 《中国光学(中英文)》 北大核心 2025年第5期1200-1208,共9页
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c... Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%. 展开更多
关键词 stretchable optical fiber sensing fiber optic vibration sensor phase generated carrier
在线阅读 下载PDF
Optical sensor for BTEX detection:Integrating machine learning for enhanced sensing 被引量:2
10
作者 Mary Hashemitaheri Ebrahim Ebrahimi +1 位作者 Geethanga de Silva Hamed Attariani 《Advanced Sensor and Energy Materials》 2024年第3期43-49,共7页
Optical sensors provide a fast and real-time approach to detect benzene,toluene,ethylbenzene,and xylenes(BTEX)in environmental monitoring and industrial safety.However,detecting the concentration of a particular gas i... Optical sensors provide a fast and real-time approach to detect benzene,toluene,ethylbenzene,and xylenes(BTEX)in environmental monitoring and industrial safety.However,detecting the concentration of a particular gas in a mixture can be challenging.Here,we develop a machine-learning model that can precisely measure BTEX concentrations simultaneously based on an absorption spectroscopy gas sensing system.The convolutional neural network(CNN)is utilized to identify the absorbance spectra for each volatile,along with their concentrations in a mixture.A synthetic data set is generated using a series of physics-based simulations to create the predictive model.The data set consists of the overall absorbance of numerous random BTEX mixtures over time,based on various percentages of the permissible exposure limit(PEL).It is worth noting that benzene has a negligible absorbance(very low PEL,1–5 ppm)compared to other volatile gases,which makes it difficult to detect.To address this challenge,we introduce a 3-stage solution to accurately discriminate between all BTEX species,regardless of their concentration levels.As a result,the R-squared above 0.99 for toluene,ethylbenzene,and oxylene,and the R-squared above 0.96 for benzene,is achieved,indicating the model's capability to predict BTEX concentrations. 展开更多
关键词 optical sensor BTEX detection Convolutional neural networks Deep learning
在线阅读 下载PDF
Liquid Crystal Based Label-Free Optical Sensors forBiochemical Application
11
作者 Jieyuan TANG Zhibin LI +4 位作者 Mengyuan XIE Yunhan LUO Jianhui YU Guojie CHEN Zhe CHEN 《Photonic Sensors》 SCIE EI CSCD 2024年第2期57-88,共32页
Biochemical sensors have important applications in biology,chemistry,and medicine.Nevertheless,many biochemical sensors are hampered by intricate techniques,cumbersome procedures,and the need for labeling.In the past ... Biochemical sensors have important applications in biology,chemistry,and medicine.Nevertheless,many biochemical sensors are hampered by intricate techniques,cumbersome procedures,and the need for labeling.In the past two decades,it has been discovered that liquid crystals can be used to achieve the optical amplification of biological interactions.By modifying recognition molecules,a variety of label-free biochemical sensors can be created.Consequently,biochemical sensors based on the amplification of liquid crystals have become one of the most promising sensors.This paper describes in detail the optical sensing principle of liquid crystals,sensing devices,and optical detection technologies.Meanwhile,the latest research findings are elucidated.Finally,the challenges and future research directions are discussed. 展开更多
关键词 optical sensor BIOCHEMISTRY liquid crystal LABEL-FREE
原文传递
Quantitative Identification of Delamination Damage in Composite Structure Based on Distributed Optical Fiber Sensors and Model Updating 被引量:1
12
作者 Hao Xu Jing Wang +3 位作者 Rubin Zhu Alfred Strauss Maosen Cao Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第6期785-803,共19页
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan... Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures. 展开更多
关键词 Composite structures fiber optic sensor damage identification model updating surrogate model
在线阅读 下载PDF
Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries
13
作者 Yiding Li Li Wang +3 位作者 Youzhi Song Wenwei Wang Cheng Lin Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期268-308,共41页
The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st... The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life. 展开更多
关键词 Smart battery Advanced embedded optical fiber sensor Battery internal physical/chemical state Quality-reliability-life characteristic
在线阅读 下载PDF
Design of modified model of intelligent assembly digital twins based on optical fiber sensor network
14
作者 Zhichao Liu Jinhua Yang +1 位作者 Juan Wang Lin Yue 《Digital Communications and Networks》 CSCD 2024年第5期1542-1552,共11页
Intelligent assembly of large-scale,complex structures using an intelligent manufacturing platform represents the future development direction for industrial manufacturing.During large-scale structural assembly proces... Intelligent assembly of large-scale,complex structures using an intelligent manufacturing platform represents the future development direction for industrial manufacturing.During large-scale structural assembly processes,several bottleneck problems occur in the existing auxiliary assembly technology.First,the traditional LiDARbased assembly technology is often limited by the openness of the manufacturing environment,in which there are blind spots,and continuous online assembly adjustment thus cannot be realized.Second,for assembly of large structures,a single-station LiDAR system cannot achieve complete coverage,which means that a multi-station combination method must be used to acquire the complete three-dimensional data;many more data errors are caused by the transfer between stations than by the measurement accuracy of a single station,which means that the overall system's measurement and adjustment errors are increased greatly.Third,because of the large numbers of structural components contained in a large assembly,the accumulated errors may lead to assembly interference,but the LiDAR-assisted assembly process does not have a feedback perception capability,and thus assembly component loss can easily be caused when assembly interference occurs.Therefore,this paper proposes to combine an optical fiber sensor network with digital twin technology,which will allow the test data from the assembly entity state in the real world to be applied to the"twin"model in the virtual world and thus solve the problems with test openness and data transfer.The problem of station and perception feedback is also addressed and represents the main innovation of this work.The system uses an optical fiber sensor network as a flexible sensing medium to monitor the strain field distribution within a complex area in real time,and then completes real-time parameter adjustment of the virtual assembly based on the distributed data.Complex areas include areas that are laser-unreachable,areas with complex contact surfaces,and areas with large-scale bending deformations.An assembly condition monitoring system is designed based on the optical fiber sensor network,and an assembly condition monitoring algorithm based on multiple physical quantities is proposed.The feasibility of use of the optical fiber sensor network as the real-state parameter acquisition module for the digital twin intelligent assembly system is discussed.The offset of any position in the test area is calculated using the convolutional neural network of a residual module to provide the compensation parameters required for the virtual model of the assembly structure.In the model optimization parameter module,a correction data table is obtained through iterative learning of the algorithm to realize state prediction from the test data.The experiment simulates a largescale structure assembly process,and performs virtual and real mapping for a variety of situations with different assembly errors to enable correction of the digital twin data stream for the assembly process through the optical fiber sensor network.In the plane strain field calibration experiment,the maximum error among the test values for this system is 0.032 mm,and the average error is 0.014 mm.The results show that use of visual calibration can correct the test error to within a very small range.This result is equally applicable to gradient curvature surfaces and freeform surfaces.Statistics show that the average measurement accuracy error for regular surfaces is better than 11.2%,and the average measurement accuracy error for irregular surfaces is better than 14.8%.During simulation of large-scale structure assembly experiments,the average position deviation accuracy is 0.043 mm,which is in line with the designed accuracy. 展开更多
关键词 Digital twins Intelligent manufacturing Intelligent assembly optical fiber sensor network Assembly condition monitoring algorithm
在线阅读 下载PDF
Temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering in highly nonlinear fiber
15
作者 Shilong Liu Yang Li +2 位作者 Hongbin Hu Bing Sun Zuxing Zhang 《Chinese Physics B》 2025年第7期394-400,共7页
A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in thi... A temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering(FSBS)in highly nonlinear fiber(HNLF)with high sensitivity and high accuracy is proposed and demonstrated in this paper.High-order acoustic modes(HOAMs)are used to achieve individual or simultaneous measurement of the two parameters.Transverse acoustic waves(TAWs)involved in the FSBS process can efficiently sense the mechanical or environmental changes outside the fiber cladding,which will be reflected in a linear shift of the acoustic resonance frequency.By analyzing the frequencies of specific scattering peaks,the temperature and acoustic impedance outside the fiber cladding can be obtained simultaneously.The highest measured temperature and acoustic impedance sensitivities are 184.93 k Hz/℃and444.56 k Hz/MRayl,and the measurement accuracies are 0.09℃and 0.009 MRayl,respectively,which are both at desirable levels.We believe this work can provide potential application solutions for sensing fields involving temperature or acoustic impedance measurements. 展开更多
关键词 forward stimulated Brillouin scattering(FSBS) fiber optic sensor temperature sensor acoustic impedance sensor simultaneous measurement
原文传递
Fiber optic high temperature sensor with weak strain sensitivity based on Mach-Zehnder interferometric structure
16
作者 LIU Ming MA Chengju +3 位作者 ZHANG Yixin LIU Qianzhen HU Hui WU Jirui 《Optoelectronics Letters》 2025年第4期199-204,共6页
We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of sin... We proposed a fiber optic high temperature sensor based on the Mach-Zehnder interference(MZI)structure,which is composed of two lengths of multi-mode fibers(MMFs),a length of few-mode fiber(FMF)and two sections of single-mode fibers(SMFs).Firstly,the two sections of MMFs were spliced with two sections of SMFs.Then,the MMFs were fused to two ends of FMF to form a symmetrically structured fiber-optic MZI structure.In this structure,the MMF served as the optical mode field coupling element,and the cladding and core of the FMF are the interference arm and the reference arm of the MZI structure,respectively.We investigated the sensor's response characteristics of the temperature and strain.The experimental results indicate that the sensor is sensitive to temperature variation,and the temperature response sensitivity is up to 61.4 pm/℃ in the range of 40-250℃,while the sensor has weak strain sensitivity,its strain sensitivity is only-0.72 pm/μe in the strain range of 0-1400μe.Moreover,the sensor has good stability and repeatability.In brief,the proposed fiber optic high temperature sensor has good properties,such as high sensitivity,compact structure,good stability and repeatability,which can be used for monitoring the temperature of submerged oil electric pump units under oil wells. 展开更多
关键词 fiber optic sensor weak strain sensitivity optical mode field coupling elementand multi mode fiber Mach Zehnder interferometric structure temperature sensing single mode fiber few mode fiber
原文传递
Synthesis and properties of undoped and Tb^(3+)-doped CsPbF_(3)QDs-in-glasses for ultraviolet emitter and optical thermometry
17
作者 Xuan Liu Qihua Yang +5 位作者 Guihua Li Hanqi Wei Jiani Wu Zhiwei Luo Gemei Cai Xiaojun Wang 《Journal of Rare Earths》 2025年第7期1337-1344,共8页
In recent years,all inorganic CsPbX_(3)(X=F,Cl,Br,and I)perovskite quantum dots(QDs)have garnered increasing attention for their exceptional optical properties.However,the comme rcialization of CsPbX_(3)is hampered by... In recent years,all inorganic CsPbX_(3)(X=F,Cl,Br,and I)perovskite quantum dots(QDs)have garnered increasing attention for their exceptional optical properties.However,the comme rcialization of CsPbX_(3)is hampered by poor environmental stability and lead toxicity.Fortunately,the strategy of incorporating CsPbX_(3)into microcrystalline glass effectively addresses this issue.Notably,CsPbF_(3)demonstrates improved phase stability and a unique electronic structure,making its exploration crucial for various applications.In this study,we synthesized CsPbF_(3)QDs-in-glass(QiG)and Tb^(3+)-doped CsPbF_(3)QDs-inglasses(QiGs)using melt quenching and in-situ growth methods.The CsPbF_(3)QiG exhibits intrinsic photoluminescence with the main peak in the ultraviolet range,while Tb^(3+)-doped glasses show coemission of CsPbF_(3)QDs and Tb^(3+),allowing tunable colors by adjusting Tb^(3+)content.We systematically studied and evaluated the application of Tb^(3+)-doped CsPbF_(3)QiG as an optical temperature sensor.Importantly,the glass sample demonstrates high stability,including good thermal stability,superior high-temperature resistance,and moisture stability.This work significantly contributes to the exploration of the optical properties of CsPbF_(3)QiG,providing new insights into its future applications in diverse optical-related fields. 展开更多
关键词 Quantum dots High stability optical temperature sensor Rare earths
原文传递
A novel orientation measurement using optical sensor for spherical motor 被引量:10
18
作者 XIN JianGuo XIA ChangLiang +1 位作者 LI HongFeng SHI TingNa 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第6期1330-1339,共10页
The measurement of spherical rotor orientation is crucial to the close-loop control of spherical motors. This paper presents a novel method for the measuring of three-degree-of-freedom (DOF) rotor orientation of spher... The measurement of spherical rotor orientation is crucial to the close-loop control of spherical motors. This paper presents a novel method for the measuring of three-degree-of-freedom (DOF) rotor orientation of spherical motors using optical sensors. The spatial orientation of spherical rotor is output in the form of ZXZ Euler angles. Firstly, the structure of the measuring system composed of optical sensors and the patterns on the rotor surface are presented, and the operational principle of recognizing intersection points between the optical ring detectors and the latitude/longitude on the rotor surface is illustrated. The analytical model of input-output characteristic is established for the measuring system of three-DOF rotor orientation. Afterwards, the effect of parameters of the optical ring detectors on the linearity, sensitivity, resolving power and measuring range of the measuring system is analyzed using the analytical model. Finally, the feasibility of the measurement is validated through experiments of prototype measuring system. The analysis is expected to be a basis for the design parameter optimization of the orientation measuring system of a PM spherical motor. 展开更多
关键词 Euler angles optical sensor orientation measurement spherical motor three-DOF
原文传递
Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development 被引量:9
19
作者 Arnaldo Leal-Junior Leticia Avellar +3 位作者 Vitorino Biazi M.Simone Soares Anselmo Frizera Carlos Marques 《Opto-Electronic Advances》 SCIE EI CAS 2022年第10期1-11,共11页
This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspir... This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspired in orb webs,which are multifunctional devices for prey capturing and vibration transmission.The multifunctional feature of the structure is achieved by using transparent resins that present both mechanical and optical properties for structural integrity and strain/deflection transmission as well as the optical signal transmission properties with core/cladding configuration of a waveguide.In this case,photocurable and polydimethylsiloxane(PDMS)resins are used for the core and cladding,respectively.The optical transmission,tensile tests,and dynamic mechanical analysis are performed in the resins and show the possibility of light transmission at the visible wavelength range in conjunction with high flexibility and a dynamic range up to 150 Hz,suitable for wearable applications.The BioMFOS has small dimensions(around 2 cm)and lightweight(0.8 g),making it suitable for wearable application and clothing integration.Characterization tests are performed in the structure by means of applying forces at different locations of the structure.The results show an ultra-high sensitivity and resolution,where forces in theμN range can be detected and the location of the applied force can also be detected with a sub-millimeter spatial resolution.Then,the BioMFOS is tested on the orientation detection in 3D plane,where a correlation coefficient higher than 0.9 is obtained when compared with a gold-standard inertial measurement unit(IMU).Furthermore,the device also shows its capabilities on the movement analysis and classification in two protocols:finger position detection(with the BioMFOS positioned on the top of the hand)and trunk orientation assessment(with the sensor integrated on the clothing).In both cases,the sensor is able of classifying the movement,especially when analyzed in conjunction with preprocessing and clustering techniques.As another wearable application,the respiratory rate is successfully estimated with the BioMFOS integrated into the clothing.Thus,the proposed multifunctional device opens new avenues for novel bioinspired photonic devices and can be used in many applications of biomedical,biomechanics,and micro/nanotechnology. 展开更多
关键词 optical sensors optical waveguides bioinspired design multifunctional structures wearable sensors
在线阅读 下载PDF
Visualized optical sensors based on two/three-dimensional photonic crystals for biochemicals 被引量:7
20
作者 Dandan Men Dilong Liu Yue Li 《Science Bulletin》 SCIE EI CAS CSCD 2016年第17期1358-1371,共14页
Responsive photonic crystals(RPCs) constructed by periodic two/three-dimensional(2D/3D) photonic crystals(PCs) and responsive-material hosts,are important visualized optical sensors.Their optical diffraction color can... Responsive photonic crystals(RPCs) constructed by periodic two/three-dimensional(2D/3D) photonic crystals(PCs) and responsive-material hosts,are important visualized optical sensors.Their optical diffraction color can be tuned reversibly by external stimuli,such as pH,metal ions,biomolecules,vapors and solvents,hence leading to wide applications as visualized sensors.This review introduces the recent progress of RPCs based on 2D/3D PCs for visual detection of chemical and biological analytes,including the preparation of 2D PCs,3D PCs films,3D PCs microbeads and their applications as visualized sensors.The different cases of detecting various chemical and biological analytes by naked eyes are presented.Emphasis is given to the description of their respective sensing mechanisms with the different systems for chemical and biological analytes.Compared with 3D RPCs sensors,2D RPCs sensors have shorter response time,better stabilization and higher production efficiency,however,the diffraction intensity of 2D RPCs based on monolayered 2D polystyrene(PS) microsphere array are weak.2D RPCs sensors based on 2D Au nanosphere can significantly improve the diffraction intensity compared with traditional 2D RPCs sensors based on monolayered PS microsphere array.The much higher scattering cross section of Au nanosphere leads to 2D Au nanosphere array with ultrahigh optical diffraction intensity,which are highly helpful for their practical application as visual sensors and further quantitative detection by monitoring the diffraction peak position and intensity. 展开更多
关键词 optical sensor Photonic crystal Biochemicals
原文传递
上一页 1 2 20 下一页 到第
使用帮助 返回顶部