Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excess...Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities.展开更多
AIM:To assess the variations in photoreceptor cell packing density(PCPD)across the retina among young healthy individuals with emmetropia,low and moderate myopia.METHODS:High-resolution adaptive optics scanning laser ...AIM:To assess the variations in photoreceptor cell packing density(PCPD)across the retina among young healthy individuals with emmetropia,low and moderate myopia.METHODS:High-resolution adaptive optics scanning laser ophthalmoscopy(AOSLO)systems were utilized for retinal imaging with a large sampling window of 700μm×700μm.The study cohort included 14 emmetropic[spherical equivalent(SE)ranged+0.5 to-0.5 D],15 low myopic(SE ranged-0.5 to-3 D)and 21 moderate myopic(SE ranged-3 to-6 D)healthy young adults.Photoreceptors at 3°temporal,6°superior and inferior 6°were captured.Statistical analysis was then performed to obtain PCPD and cell spacing.RESULTS:The average age of participants was 22.54±2.86(ranged 20–30y)with no difference among 3 groups.At 3°temporal,the emmetropic group exhibited the highest PCPD of 15186.16±2050.54 cells/mm^(2),while the low and moderate myopic groups had PCPD of 14009.15±1073.01 and 13466.92±1121.71 cells/mm2,respectively.At 3°temporal,the emmetropic group also had the smallest cell spacing at 6.66±0.26 mm,compared to 6.85±0.26 and 6.91±0.28 mm for the low and moderate myopic groups,respectively.Compared to the emmetropic group,at 3°temporal,the myopic groups showed significantly reduced PCPD(low myopia:P=0.032;moderate myopia:P=0.001).At 6°inferior,the moderate myopic group exhibited a significant decrease in PCPD(P=0.013),while at 6°superior,there were no significant statistical differences in PCPD for the low and moderate myopic groups(P>0.05).In comparison to the emmetropic group,only the moderate myopic group showed significantly increased cell spacing at all three positions(temporal 3°:P=0.011,superior 6°:P=0.046,inferior 6°:P=0.013).Correlation analysis revealed a positive correlation between PCPD and axial length changes(P<0.05).CONCLUSION:Reduced PCPD and increased cell spacing strongly correlated with refractive error in mild to moderate myopic eyes,especially at 6°inferior to the fovea and the decreased PCPD in the macular region of myopic patients may be associated with increased axial lengthinduced retinal stretching.展开更多
Two-photon microscopy normally suffers from the scattering of the tissue in biological imaging.Multidither coberent optical adaptive technique(COAT)can correct the scattered wavefront in parallel.However,the determina...Two-photon microscopy normally suffers from the scattering of the tissue in biological imaging.Multidither coberent optical adaptive technique(COAT)can correct the scattered wavefront in parallel.However,the determination of the corrective phases may not be completely accurate using conventional method,which undermines the performance of this technique.In this paper,we theoretically demonstrate a method that can obtain more accurate corrective phases by determining the phase values from the square root of the fuorescence signal.A numnerical simulation model is established to study the performance of adaptive optics in two-photon micros-copy by combining scalar diffraction theory with vector diffraction theory.The results show that the distortion of the wavefront can be corrected more thoroughly with our method in two-photon imaging.In our simulation,with the scattering from a 450-mn-thick mouse brain tissue,excitation focal spots with higher peak-to background ratio(PBR)and images with higher contrast can be obtained.Hence,further enhancement of the multidither COAT correction performance in two-photon imaging can be expected.展开更多
Despite the unique advantages of optical microscopy for molecular specific high resolution imaging of living structure in both space and time,curent applications are mostly limited to research settings.This is due to ...Despite the unique advantages of optical microscopy for molecular specific high resolution imaging of living structure in both space and time,curent applications are mostly limited to research settings.This is due to the aberrations and multiple scattering that is induced by the inhomogeneous refractive boundaries that are inherent to biological systems.However,recent developments in adaptive optics and wavefront shaping have shown that high resolution optical imaging is not fundamentally limited only to the observation of single cells,but can be significantly enhanced to realize deep tissue imaging.To provide insight into how these two closely related fields can expand the limits of bio imaging,we review the recent progresses in their performance and applicable range of studies as well as potential future research directions to push the limits of deep tissuse imnaging.展开更多
Adaptive optics has been widely used in biological science to recover high-resolution optical image deep into the tissue,where optical distortion detection with high speed and accuracy is strongly required.Here,we int...Adaptive optics has been widely used in biological science to recover high-resolution optical image deep into the tissue,where optical distortion detection with high speed and accuracy is strongly required.Here,we introduce convolutional neural networks,one of the most popular machine learning models,into Shack-Hartmann wavefront sensor(SHWS)to simplify optical distortion detection processes.Without image segmentation or centroid positioning algorithm,the trained network could estimate up to 36th Zernike mode coefficients directly from a full SHWS image within 1.227ms on a personal computer,and achieves prediction accuracy up to 97.4%.The simulation results show that the average root mean squared error in phase residuals of our method is 75.64%lower than that with the modal-based SHWS method.With the high detection accuracy and simplified detection processes,this work has the potential to be applied in wavefront sensor-based adaptive optics for in vivo deep tissue imaging.展开更多
A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An ...A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.展开更多
Even in the early stage,endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm.However,the fundus cameras used in clinic diagnosis can only obtain images o...Even in the early stage,endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm.However,the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter.The human retina is a thin and multiple layer tissue,and the layer of capillaries less than10 μm in diameter only exists in the inner nuclear layer.The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers,which varies from person to person.Therefore,determining reasonable capillary layer(CL) position in different human eyes is very difficult.In this paper,we propose a method to determine the position of retinal CL based on the rod&cone cell layer.The public positions of CL are recognized with 15 subjects from 40 to 59 years old,and the imaging planes of CL are calculated by the effective focal length of the human eye.High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system(LCAOS) validate our method.All of the subjects' CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer,which is influenced by the depth of focus.展开更多
Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(...Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.展开更多
The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning l...The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning laser ophthalmoscope(AOSLO)provides an excellent tool to acquire accurate and detailed information about the parafoveal area with cellular resolution.However,limited by the scanning speed of two-dimensional scanning,thefield of view(FOV)in the AOSLO system was usually less than or equal to 2,and the stitching for the parafoveal area required dozens of images,which was time-consuming and laborious.Unfortunately,almost half of patients are unable to obtain stitched images because of their poorfixation.To solve this problem,we integrate AO technology with the line-scan imaging method to build an adaptive optics line scanning ophthalmoscope(AOLSO)system with a larger FOV.In the AOLSO,afocal spherical mirrors in pairs are nonplanar arranged and the distance and angle between optical elements are optimized to minimize the aberrations,two cylinder lenses are orthogonally placed before the imaging sensor to stretch the point spread function(PSF)for sufficiently digitizing light energy.Captured human retinal images show the whole parafoveal area with 55FOV,60 Hz frame rate and cellular resolutions.Take advantage of the 5FOV of the AOLSO,only 9 frames of the retina are captured with several minutes to stitch a montage image with an FOV of 99,in which photoreceptor counting is performed within approximately 5eccentricity.The AOLSO system not only provides cellular resolution but also has the capability to capture the parafoveal region in a single frame,which offers great potential for noninvasive studying of the parafoveal area.展开更多
Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number...Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number of actuators,and there are problems with structural coupling and large temperature increases in their internal coils.Additionally,parameters of the traditional proportional integral derivative(PID)control cannot be adjusted in real-time to adapt to system changes.These problems can be addressed by introducing fuzzy control methods.A table lookup method is adopted to replace real-time calculations of the regular fuzzy controller during the control process,and a prototype platform has been established to verify the effectiveness and robustness of this process.Experimental tests compare the control performance of traditional and fuzzy proportional integral derivative(Fuzzy-PID)controllers,showing that,in system step response tests,the fuzzy control system reduces rise time by 20.25%,decreases overshoot by 78.24%,and shortens settling time by 67.59%.In disturbance rejection experiments,fuzzy control achieves a 46.09%reduction in the maximum deviation,indicating stronger robustness.The Fuzzy-PID controller,based on table lookup,outperforms the standard controller significantly,showing excellent potential for enhancing the dynamic performance and disturbance rejection capability of the voice coil motor actuator system.展开更多
Our Portable Adaptive Optics(PAO)system designed for high-contrast imaging of exoplanets with current 2-4 m class telescopes achieves a correction speed of nearly 1000 Hz,utilizing a Shack-Hartmann Wave Front Sensor(W...Our Portable Adaptive Optics(PAO)system designed for high-contrast imaging of exoplanets with current 2-4 m class telescopes achieves a correction speed of nearly 1000 Hz,utilizing a Shack-Hartmann Wave Front Sensor(WFS)in a 9×9 sub-aperture configuration.As we look towards adapting the PAO system for larger telescopes,an increase in the number of sub-apertures in the WFS and enhanced precision in wave front detection are imperative.Originally programmed in LabVIEW,our initial PAO software is based on a traditional centroid calculation module for nighttime wave front sensing and lacks adaptive processing of background noise.To address these limitations and to boost the PAO system's performance and accuracy in wave front detection,we propose a compressive neural network(Th-Net)combined with a specialized hybrid parallel programming approach for wave front detection.Our experimental results indicate that this hybrid parallel technique and Th-Net significantly enhance the PAO system's operational speed and wave front detection precision under uneven background noise.This work paves the way so that a duplicable and low-cost PAO system can be used for direct imaging of exoplanets with large telescopes.展开更多
With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a...With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a suitable replacement for Faulhaber Precistep stepper motors.However,the small electrical time constant of such coreless motors poses a challenge,as the problem of severe commutation torque ripple in a fiber positioner running a position loop has been tricky.To overcome this challenge,it is advised to increase the Pulse Width Modulation(PWM)frequency as much as possible to mitigate the effects of the current fluctuation.This must be done while ensuring adequate resolution of the PWM generator.By employing a voltage open-loop field-oriented control based on a modulation frequency of 1 MHz,the drive current only costs 25 m A under a 3.3 V power supply.The sine degree of phase current is immaculate,and the repeat positioning accuracy can reach 2μm.Moreover,it is possible to further shrink the bill of devices and the layout area of the Printed Circuit Board,especially in sizesensitive applications.This device has been developed under the new generation of The Large Sky Area MultiObject Fiber Spectroscopic Telescope.展开更多
The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific educa...The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.展开更多
We present what we believe is the first conjugate adaptive optics(AO)extension that can be retrofitted into a commercial microscope by being positioned between the camera port and the image sensor.The extension featur...We present what we believe is the first conjugate adaptive optics(AO)extension that can be retrofitted into a commercial microscope by being positioned between the camera port and the image sensor.The extension features a deformable phase plate(DPP),a refractive wavefront modulator,and indirect wavefront sensing to form a completely in-line architecture.This allows the axial position of the DPP to be optimized by maximizing an image quality metric,which is a cumbersome task with deformable mirrors as the correction element.We demonstrate the performance of the system on a Zeiss AxioVert 200M microscope equipped with a 20×0.75 NA air objective.To simulate sample-induced complex aberrations,transparent custom-made arbitrary phase plates were introduced between the sample and the objective.We demonstrate that the extension can provide high-quality full-field correction even for large aberrations,when the DPP is placed at the conjugate plane of the phase plates.We also demonstrate that both the DPP position and its surface profile can be optimized blindly,which can pave the way for plug-and-play conjugate-AO systems.展开更多
On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both ...On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.展开更多
Based on the regularities of temperature fluctuation,the atmo- sphere below an altitude of 71km above ground is divided into 6 sublayers. For each of them the calculation formulae of temperature and pressure are deriv...Based on the regularities of temperature fluctuation,the atmo- sphere below an altitude of 71km above ground is divided into 6 sublayers. For each of them the calculation formulae of temperature and pressure are derived.The calculated results at any altitude in the range under considera- tion agree well with the values laid down in the table of“U.S.Standard At- mosphere”.From this the formula for the refractive-index structure coeffi- cient C_N^2,of much importance in the research of adaptive optics,is obtained for the corresponding altitudes.展开更多
A wavefront sensing and correction correction is proposed that would allow the field of view (FOV) of an adaptive optics spstem to be increased in size by a factor of several tens. This concept is based on the idea of...A wavefront sensing and correction correction is proposed that would allow the field of view (FOV) of an adaptive optics spstem to be increased in size by a factor of several tens. This concept is based on the idea of placing multiple deformable mirrors (DMs) at locations that are conjugate to corresponding. layers of atmospheric turbulence. In order to control properly each DM, a tomographic method for determining the phase distortion contributed by each atmospheric layer has been developed and used in dealing with the circumstance of two layers.展开更多
Adaptive optics techniques have been developed over the past half century and routinely used in large ground-based telescopes for more than 30 years.Although this technique has already been used in various application...Adaptive optics techniques have been developed over the past half century and routinely used in large ground-based telescopes for more than 30 years.Although this technique has already been used in various applications,the basic setup and methods have not changed over the past 40 years.In recent years,with the rapid development of artificial in-telligence,adaptive optics will be boosted dramatically.In this paper,the recent advances on almost all aspects of adapt-ive optics based on machine learning are summarized.The state-of-the-art performance of intelligent adaptive optics are reviewed.The potential advantages and deficiencies of intelligent adaptive optics are also discussed.展开更多
Coherent optical control within or through scattering media via wavefront shaping has seen broad applications since its invention around 2007.Wavefront shaping is aimed at overcoming the strong scattering,featured by ...Coherent optical control within or through scattering media via wavefront shaping has seen broad applications since its invention around 2007.Wavefront shaping is aimed at overcoming the strong scattering,featured by random interference,namely speckle patterns.This randomness occurs due to the refractive index inhomogeneity in complex media like biological tissue or the modal dispersion in multimode fiber,yet this randomness is actually deterministic and potentially can be time reversal or precompensated.Various wavefront shaping approaches,such as optical phase conjugation,iterative optimization,and transmission matrix measurement,have been developed to generate tight and intense optical delivery or high-resolution image of an optical object behind or within a scattering medium.The performance of these modula-tions,however,is far from satisfaction.Most recently,artifcial intelligence has brought new inspirations to this field,providing exciting hopes to tackle the challenges by mapping the input and output optical patterns and building a neuron network that inherently links them.In this paper,we survey the developments to date on this topic and briefly discuss our views on how to harness machine learning(deep learning in particular)for further advancements in the field.展开更多
Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fibe...Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fiber coupling. In this paper, we verified a new adaptive-optic device named adaptive fiber coupler (AFC) which could compensate angular jitters and improve the SMF coupling efficiency in some degree. Experiments of SMF coupling under the angular jitter situation using AFC have been achieved. Stochastic parallel gradient descent (SPGD) algorithm is employed as the control strategy, of which the iteration rate is 625 Hz. In closed loop, the coupling efficiency keeps above 65% when angular errors are below 80/3tad. The compensation bandwidth is 35 Hz at sine-jitter of 15 ~rad amplitude with average coupling efficiency of above 60%. Also, experiments with simulated turbulence have been studied. The average coupling efficiency increases from 31.97% in open loop to 61.33% in closed loop, and mean square error (MSE) of coupling efficiency drops from 7.43% to 1.75%.展开更多
基金support from the National Science Foundation of China(NSFC)(Grants No.12293031 and No.61905252)the National Science Foundation for Distinguished Young Scholars(Grant No.12022308)the National Key R&D Program of China(Grants No.2021YFC2202200 and No.2021YFC2202204).
文摘Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities.
基金Supported by National Natural Science Foundation of China(No.82271107).
文摘AIM:To assess the variations in photoreceptor cell packing density(PCPD)across the retina among young healthy individuals with emmetropia,low and moderate myopia.METHODS:High-resolution adaptive optics scanning laser ophthalmoscopy(AOSLO)systems were utilized for retinal imaging with a large sampling window of 700μm×700μm.The study cohort included 14 emmetropic[spherical equivalent(SE)ranged+0.5 to-0.5 D],15 low myopic(SE ranged-0.5 to-3 D)and 21 moderate myopic(SE ranged-3 to-6 D)healthy young adults.Photoreceptors at 3°temporal,6°superior and inferior 6°were captured.Statistical analysis was then performed to obtain PCPD and cell spacing.RESULTS:The average age of participants was 22.54±2.86(ranged 20–30y)with no difference among 3 groups.At 3°temporal,the emmetropic group exhibited the highest PCPD of 15186.16±2050.54 cells/mm^(2),while the low and moderate myopic groups had PCPD of 14009.15±1073.01 and 13466.92±1121.71 cells/mm2,respectively.At 3°temporal,the emmetropic group also had the smallest cell spacing at 6.66±0.26 mm,compared to 6.85±0.26 and 6.91±0.28 mm for the low and moderate myopic groups,respectively.Compared to the emmetropic group,at 3°temporal,the myopic groups showed significantly reduced PCPD(low myopia:P=0.032;moderate myopia:P=0.001).At 6°inferior,the moderate myopic group exhibited a significant decrease in PCPD(P=0.013),while at 6°superior,there were no significant statistical differences in PCPD for the low and moderate myopic groups(P>0.05).In comparison to the emmetropic group,only the moderate myopic group showed significantly increased cell spacing at all three positions(temporal 3°:P=0.011,superior 6°:P=0.046,inferior 6°:P=0.013).Correlation analysis revealed a positive correlation between PCPD and axial length changes(P<0.05).CONCLUSION:Reduced PCPD and increased cell spacing strongly correlated with refractive error in mild to moderate myopic eyes,especially at 6°inferior to the fovea and the decreased PCPD in the macular region of myopic patients may be associated with increased axial lengthinduced retinal stretching.
基金supported by National Natural Science Foundation of China(Nos.31571110 and 81771877)Natural Science Foundation of Zhejiang Province of China(LZ17F050001)the Fundamental Research Funds for the Central Universities.
文摘Two-photon microscopy normally suffers from the scattering of the tissue in biological imaging.Multidither coberent optical adaptive technique(COAT)can correct the scattered wavefront in parallel.However,the determination of the corrective phases may not be completely accurate using conventional method,which undermines the performance of this technique.In this paper,we theoretically demonstrate a method that can obtain more accurate corrective phases by determining the phase values from the square root of the fuorescence signal.A numnerical simulation model is established to study the performance of adaptive optics in two-photon micros-copy by combining scalar diffraction theory with vector diffraction theory.The results show that the distortion of the wavefront can be corrected more thoroughly with our method in two-photon imaging.In our simulation,with the scattering from a 450-mn-thick mouse brain tissue,excitation focal spots with higher peak-to background ratio(PBR)and images with higher contrast can be obtained.Hence,further enhancement of the multidither COAT correction performance in two-photon imaging can be expected.
基金supported by the National Research Foundation of Korea(Nos.2016R1C1B201530 and 2017M3C7A1044966)the Agency for Defense Development(UD170075FD)the TJ Park Foundation.
文摘Despite the unique advantages of optical microscopy for molecular specific high resolution imaging of living structure in both space and time,curent applications are mostly limited to research settings.This is due to the aberrations and multiple scattering that is induced by the inhomogeneous refractive boundaries that are inherent to biological systems.However,recent developments in adaptive optics and wavefront shaping have shown that high resolution optical imaging is not fundamentally limited only to the observation of single cells,but can be significantly enhanced to realize deep tissue imaging.To provide insight into how these two closely related fields can expand the limits of bio imaging,we review the recent progresses in their performance and applicable range of studies as well as potential future research directions to push the limits of deep tissuse imnaging.
基金supported by the National Natural Science Foundation of China(31571110,61735016,81771877)the Natural Science Foundation of Zhejiang Province of China(LZ17F050001)+1 种基金Zhe-jiang Lab(2018EB0ZX01)the Fundamental Research Funds for the Central Universities
文摘Adaptive optics has been widely used in biological science to recover high-resolution optical image deep into the tissue,where optical distortion detection with high speed and accuracy is strongly required.Here,we introduce convolutional neural networks,one of the most popular machine learning models,into Shack-Hartmann wavefront sensor(SHWS)to simplify optical distortion detection processes.Without image segmentation or centroid positioning algorithm,the trained network could estimate up to 36th Zernike mode coefficients directly from a full SHWS image within 1.227ms on a personal computer,and achieves prediction accuracy up to 97.4%.The simulation results show that the average root mean squared error in phase residuals of our method is 75.64%lower than that with the modal-based SHWS method.With the high detection accuracy and simplified detection processes,this work has the potential to be applied in wavefront sensor-based adaptive optics for in vivo deep tissue imaging.
基金Supported by the National Natural Science Foundation of China
文摘A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174274,11174279,61205021,11204299,61475152,and 61405194)
文摘Even in the early stage,endocrine metabolism disease may lead to micro aneurysms in retinal capillaries whose diameters are less than 10 μm.However,the fundus cameras used in clinic diagnosis can only obtain images of vessels larger than 20 μm in diameter.The human retina is a thin and multiple layer tissue,and the layer of capillaries less than10 μm in diameter only exists in the inner nuclear layer.The layer thickness of capillaries less than 10 μm in diameter is about 40 μm and the distance range to rod&cone cell surface is tens of micrometers,which varies from person to person.Therefore,determining reasonable capillary layer(CL) position in different human eyes is very difficult.In this paper,we propose a method to determine the position of retinal CL based on the rod&cone cell layer.The public positions of CL are recognized with 15 subjects from 40 to 59 years old,and the imaging planes of CL are calculated by the effective focal length of the human eye.High resolution retinal capillary imaging results obtained from 17 subjects with a liquid crystal adaptive optics system(LCAOS) validate our method.All of the subjects' CLs have public positions from 127 μm to 147 μm from the rod&cone cell layer,which is influenced by the depth of focus.
基金funded by the National Natural Science Foundation of China(11727805,12103057)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021378).
文摘Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.
基金supported by the National Natural Science Foundation of China under Grant No.62075235,National Key R&D Program of China under Grant No.2021YFF0700700Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City under Grant No.ZXL2021425+1 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences under Grant No.2019320Innovation of Scientific Research Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA15021304.
文摘The parafoveal area,with its high concentration of photoreceptors andfine retinal capillaries,is crucial for central vision and often exhibits early signs of pathological changes.The current adaptive optics scanning laser ophthalmoscope(AOSLO)provides an excellent tool to acquire accurate and detailed information about the parafoveal area with cellular resolution.However,limited by the scanning speed of two-dimensional scanning,thefield of view(FOV)in the AOSLO system was usually less than or equal to 2,and the stitching for the parafoveal area required dozens of images,which was time-consuming and laborious.Unfortunately,almost half of patients are unable to obtain stitched images because of their poorfixation.To solve this problem,we integrate AO technology with the line-scan imaging method to build an adaptive optics line scanning ophthalmoscope(AOLSO)system with a larger FOV.In the AOLSO,afocal spherical mirrors in pairs are nonplanar arranged and the distance and angle between optical elements are optimized to minimize the aberrations,two cylinder lenses are orthogonally placed before the imaging sensor to stretch the point spread function(PSF)for sufficiently digitizing light energy.Captured human retinal images show the whole parafoveal area with 55FOV,60 Hz frame rate and cellular resolutions.Take advantage of the 5FOV of the AOLSO,only 9 frames of the retina are captured with several minutes to stitch a montage image with an FOV of 99,in which photoreceptor counting is performed within approximately 5eccentricity.The AOLSO system not only provides cellular resolution but also has the capability to capture the parafoveal region in a single frame,which offers great potential for noninvasive studying of the parafoveal area.
基金supported by the National Key R&D Program of China (2022YFA1603001,2021YFC2801402)the National Nature Science Foundation of China (12073053)the Science and Technology Plan of Inner Mongolia (2021GG0245).
文摘Research on adaptive deformable mirror technology for voice coil actuators(VCAs)is an important trend in the development of large ground-based telescopes.A voice coil adaptive deformable mirror contains a large number of actuators,and there are problems with structural coupling and large temperature increases in their internal coils.Additionally,parameters of the traditional proportional integral derivative(PID)control cannot be adjusted in real-time to adapt to system changes.These problems can be addressed by introducing fuzzy control methods.A table lookup method is adopted to replace real-time calculations of the regular fuzzy controller during the control process,and a prototype platform has been established to verify the effectiveness and robustness of this process.Experimental tests compare the control performance of traditional and fuzzy proportional integral derivative(Fuzzy-PID)controllers,showing that,in system step response tests,the fuzzy control system reduces rise time by 20.25%,decreases overshoot by 78.24%,and shortens settling time by 67.59%.In disturbance rejection experiments,fuzzy control achieves a 46.09%reduction in the maximum deviation,indicating stronger robustness.The Fuzzy-PID controller,based on table lookup,outperforms the standard controller significantly,showing excellent potential for enhancing the dynamic performance and disturbance rejection capability of the voice coil motor actuator system.
文摘Our Portable Adaptive Optics(PAO)system designed for high-contrast imaging of exoplanets with current 2-4 m class telescopes achieves a correction speed of nearly 1000 Hz,utilizing a Shack-Hartmann Wave Front Sensor(WFS)in a 9×9 sub-aperture configuration.As we look towards adapting the PAO system for larger telescopes,an increase in the number of sub-apertures in the WFS and enhanced precision in wave front detection are imperative.Originally programmed in LabVIEW,our initial PAO software is based on a traditional centroid calculation module for nighttime wave front sensing and lacks adaptive processing of background noise.To address these limitations and to boost the PAO system's performance and accuracy in wave front detection,we propose a compressive neural network(Th-Net)combined with a specialized hybrid parallel programming approach for wave front detection.Our experimental results indicate that this hybrid parallel technique and Th-Net significantly enhance the PAO system's operational speed and wave front detection precision under uneven background noise.This work paves the way so that a duplicable and low-cost PAO system can be used for direct imaging of exoplanets with large telescopes.
文摘With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a suitable replacement for Faulhaber Precistep stepper motors.However,the small electrical time constant of such coreless motors poses a challenge,as the problem of severe commutation torque ripple in a fiber positioner running a position loop has been tricky.To overcome this challenge,it is advised to increase the Pulse Width Modulation(PWM)frequency as much as possible to mitigate the effects of the current fluctuation.This must be done while ensuring adequate resolution of the PWM generator.By employing a voltage open-loop field-oriented control based on a modulation frequency of 1 MHz,the drive current only costs 25 m A under a 3.3 V power supply.The sine degree of phase current is immaculate,and the repeat positioning accuracy can reach 2μm.Moreover,it is possible to further shrink the bill of devices and the layout area of the Printed Circuit Board,especially in sizesensitive applications.This device has been developed under the new generation of The Large Sky Area MultiObject Fiber Spectroscopic Telescope.
基金supported by the Shanghai Municipal People’s Government
文摘The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.
文摘We present what we believe is the first conjugate adaptive optics(AO)extension that can be retrofitted into a commercial microscope by being positioned between the camera port and the image sensor.The extension features a deformable phase plate(DPP),a refractive wavefront modulator,and indirect wavefront sensing to form a completely in-line architecture.This allows the axial position of the DPP to be optimized by maximizing an image quality metric,which is a cumbersome task with deformable mirrors as the correction element.We demonstrate the performance of the system on a Zeiss AxioVert 200M microscope equipped with a 20×0.75 NA air objective.To simulate sample-induced complex aberrations,transparent custom-made arbitrary phase plates were introduced between the sample and the objective.We demonstrate that the extension can provide high-quality full-field correction even for large aberrations,when the DPP is placed at the conjugate plane of the phase plates.We also demonstrate that both the DPP position and its surface profile can be optimized blindly,which can pave the way for plug-and-play conjugate-AO systems.
文摘On the basis of Hartmann Shack sensor imaging analysis, a new method is presented with which the wavefront slope can be obtained when the object is incoherent and extended. This method, which is demonstrated by both theoretical interpreting and computer simulation, explains how to measure the wavefront slope difference between two sub apertures through the determination of image displacements on detector plane. It includes a fast and accurate digital algorithm for detecting wavefront disturbance, which is much suitable for realization in such electrical hardwares as digital signal processors.
文摘Based on the regularities of temperature fluctuation,the atmo- sphere below an altitude of 71km above ground is divided into 6 sublayers. For each of them the calculation formulae of temperature and pressure are derived.The calculated results at any altitude in the range under considera- tion agree well with the values laid down in the table of“U.S.Standard At- mosphere”.From this the formula for the refractive-index structure coeffi- cient C_N^2,of much importance in the research of adaptive optics,is obtained for the corresponding altitudes.
文摘A wavefront sensing and correction correction is proposed that would allow the field of view (FOV) of an adaptive optics spstem to be increased in size by a factor of several tens. This concept is based on the idea of placing multiple deformable mirrors (DMs) at locations that are conjugate to corresponding. layers of atmospheric turbulence. In order to control properly each DM, a tomographic method for determining the phase distortion contributed by each atmospheric layer has been developed and used in dealing with the circumstance of two layers.
基金funded by the National Natural Science Foundation of China(12173041,11733005,11727805)Youth Innovation Promotion Association,Chinese Academy of Sciences (No.2020376)+2 种基金Frontier Research Fund of Institute of Optics and Electronics,Chinese Academy of Sciences (No.C21K002)Research Equipment Development Project of the Chinese Academy of Sciences (No.YA18K019)Laboratory Innovation Foundation of the Chinese Academy of Sciences (No.YJ20K002)
文摘Adaptive optics techniques have been developed over the past half century and routinely used in large ground-based telescopes for more than 30 years.Although this technique has already been used in various applications,the basic setup and methods have not changed over the past 40 years.In recent years,with the rapid development of artificial in-telligence,adaptive optics will be boosted dramatically.In this paper,the recent advances on almost all aspects of adapt-ive optics based on machine learning are summarized.The state-of-the-art performance of intelligent adaptive optics are reviewed.The potential advantages and deficiencies of intelligent adaptive optics are also discussed.
基金supported by the National Natural Science Foundation of China(Nos.81671726 and 81627805)the Hong Kong Research Grant Council(No.25204416)+1 种基金the Shenzhen Science and Technology Innovation Commission(No.JCYJ20170818104421564)the Hong Kong Innovation and Technology Commission(No.ITS/022/18).
文摘Coherent optical control within or through scattering media via wavefront shaping has seen broad applications since its invention around 2007.Wavefront shaping is aimed at overcoming the strong scattering,featured by random interference,namely speckle patterns.This randomness occurs due to the refractive index inhomogeneity in complex media like biological tissue or the modal dispersion in multimode fiber,yet this randomness is actually deterministic and potentially can be time reversal or precompensated.Various wavefront shaping approaches,such as optical phase conjugation,iterative optimization,and transmission matrix measurement,have been developed to generate tight and intense optical delivery or high-resolution image of an optical object behind or within a scattering medium.The performance of these modula-tions,however,is far from satisfaction.Most recently,artifcial intelligence has brought new inspirations to this field,providing exciting hopes to tackle the challenges by mapping the input and output optical patterns and building a neuron network that inherently links them.In this paper,we survey the developments to date on this topic and briefly discuss our views on how to harness machine learning(deep learning in particular)for further advancements in the field.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61205069).
文摘Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fiber coupling. In this paper, we verified a new adaptive-optic device named adaptive fiber coupler (AFC) which could compensate angular jitters and improve the SMF coupling efficiency in some degree. Experiments of SMF coupling under the angular jitter situation using AFC have been achieved. Stochastic parallel gradient descent (SPGD) algorithm is employed as the control strategy, of which the iteration rate is 625 Hz. In closed loop, the coupling efficiency keeps above 65% when angular errors are below 80/3tad. The compensation bandwidth is 35 Hz at sine-jitter of 15 ~rad amplitude with average coupling efficiency of above 60%. Also, experiments with simulated turbulence have been studied. The average coupling efficiency increases from 31.97% in open loop to 61.33% in closed loop, and mean square error (MSE) of coupling efficiency drops from 7.43% to 1.75%.