期刊文献+
共找到128,161篇文章
< 1 2 250 >
每页显示 20 50 100
A Novel Model of Traumatic Optic Neuropathy Under Direct Vision Through the Anterior Orbital Approach in Non-human Primates
1
作者 Zhi‑Qiang Xiao Xiu Han +9 位作者 Xin Ren Zeng‑Qiang Wang Si‑Qi Chen Qiao‑Feng Zhu Hai‑Yang Cheng Yin‑Tian Li Dan Liang Xuan‑Wei Liang Ying Xu Hui Yang 《Neuroscience Bulletin》 2025年第5期911-916,共6页
Dear Editor,Traumatic optic neuropathy(TON)is a severe vision-threatening condition,with an incidence rate ranging from 0.7% to 2.5%[1].The limited regenerative capacity of the optic nerve and the challenges of nerve ... Dear Editor,Traumatic optic neuropathy(TON)is a severe vision-threatening condition,with an incidence rate ranging from 0.7% to 2.5%[1].The limited regenerative capacity of the optic nerve and the challenges of nerve transplantation result in substantial and irreversible visual loss in patients with TON. 展开更多
关键词 traumatic optic neuropathy non human primates vision threatening condition anterior orbital approach optic nerve transplantation optic neuropathy ton nerve transplantation optic nerve
原文传递
Macular microvascular and structural changes on optical coherence tomography angiography in atypical optic neuritis 被引量:1
2
作者 Chinmay Mahatme Madhurima Kaushik +2 位作者 Veerappan Rathinasabapathy Saravanan Karthik Kumar Virna M Shah 《World Journal of Methodology》 2025年第1期88-94,共7页
BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic im... BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases. 展开更多
关键词 optical coherence tomography angiography Atypical optic neuritis Macular microvascular changes Neuromyelitis optica spectrum disorders Myelin oligodendrocyte glycoprotein antibody disorder
暂未订购
High-efficiency RGB achromatic liquid crystal diffractive optical elements 被引量:1
3
作者 Yuqiang Ding Xiaojin Huang +2 位作者 Yongziyan Ma Yan Li Shin-Tson Wu 《Opto-Electronic Advances》 2025年第3期4-15,共12页
Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However... Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs. 展开更多
关键词 achromatic diffractive optical elements Pacharatnam-Berry phase optical elements liquid crystal planar optics near-eye displays
在线阅读 下载PDF
Assembly of a Janus Composite Nanoparticle Optically Levitated in Vacuum
4
作者 Jiangwei Yan Jiayu Feng +5 位作者 Chenli Gao Yuanbin Jin Zhengkun Fu Zheng Han Jing Zhang Xudong Yu 《Chinese Physics Letters》 2025年第8期69-74,共6页
The optically levitated mechanical system in vacuum is a powerful platform in physics.It has been displaying more extensive application prospects.This paper presents an experimental study of optical levitation,identif... The optically levitated mechanical system in vacuum is a powerful platform in physics.It has been displaying more extensive application prospects.This paper presents an experimental study of optical levitation,identification,motion measurement,and assembly of two-species photoluminescence nanoparticles.A laser trapping array simultaneously levitates nitrogen-vacancy(NV)nanodiamonds and Yb^(3+)/Er^(3+):NaYF_(4)nanoparticles.The species of each nanoparticle can be individually identified by measuring the photoluminescence spectrum.We choose the single NV nanodiamond and Yb^(3+)/Er^(3+):NaYF_(4)nanoparticle and assemble them into a Janus composite nanoparticle,which integrates the merits of the two components.This work demonstrates the potential advantages of a hybrid optically levitated system.It provides a practicable scheme for the study of macroscopic quantum phenomena and precision measurement,thanks to the spin manipulation or spin-mechanical coupling of an NV diamond and by simultaneously implementing laser refrigeration to the Yb^(3+)/Er^(3+):NaYF_(4)nanoparticle in an optically levitated composite nanoparticle. 展开更多
关键词 laser trapping array optically levitated mechanical system optical levitation nanoparticle assembly Yb sup sup Er sup sup NaYF sub sub nanoparticle optical levitationidentificationmotion measurementand VACUUM photoluminescence
原文传递
Optical network-on-chip (ONoC) architectures: a detailed analysis of optical router designs
5
作者 Yasin Asadi 《Journal of Semiconductors》 2025年第3期12-47,共36页
Optical network-on-chip(ONoC) systems have emerged as a promising solution to overcome limitations of traditional electronic interconnects. Efficient ONoC architectures rely on optical routers, enabling high-speed dat... Optical network-on-chip(ONoC) systems have emerged as a promising solution to overcome limitations of traditional electronic interconnects. Efficient ONoC architectures rely on optical routers, enabling high-speed data transfer, efficient routing, and scalability. This paper presents a comprehensive survey analyzing optical router designs, specifically microring resonators(MRRs), Mach-Zehnder interferometers(MZIs), and hybrid architectures. Selected comparison criteria, chosen for their critical importance, significantly impact router functionality and performance. By emphasizing these criteria, valuable insights into the strengths and limitations of different designs are gained, facilitating informed decisions and advancements in optical networking. While other factors contribute to performance and efficiency, the chosen criteria consistently address fundamental elements, enabling meaningful evaluation. This work serves as a valuable resource for beginners, providing a solid foundation in understanding ONoC and optical routers. It also offers an in-depth survey for experts, laying the groundwork for further exploration. Additionally, the importance of considering design constraints and requirements when selecting an optimal router design is highlighted. Continued research and innovation will enable the development of efficient optical router solutions that meet the evolving needs of modern computing systems. This survey underscores the significance of ongoing advancements in the field and their potential impact on future technologies. 展开更多
关键词 optical network-on-chip(ONoC) optical routers microring resonators(MRRs) Mach−Zehnder interferometers(MZIs) optical networking scalability
在线阅读 下载PDF
Beyond the optic disc:Investigating gender-based differences in optic neuritis
6
作者 Marco Zeppieri Simonetta Gaia Nicolosi +6 位作者 Fabiana D’Esposito Mutali Musa Alessandro Avitabile Caterina Gagliano Marco Battista Piero Barboni Matteo Capobianco 《World Journal of Clinical Cases》 2025年第32期23-36,共14页
Optic neuritis(ON)is a focal inflammatory demyelinating disorder of the optic nerve.Although classically regarded as a sentinel event for multiple sclerosis(MS),ON also occurs in antibody-mediated entities such as aqu... Optic neuritis(ON)is a focal inflammatory demyelinating disorder of the optic nerve.Although classically regarded as a sentinel event for multiple sclerosis(MS),ON also occurs in antibody-mediated entities such as aquaporin-4-IgGpositive neuromyelitis optica spectrum disorder(AQP4-NMOSD)and myelinoligodendrocyte-glycoprotein-antibody disease.In all these settings biological sex is a pivotal determinant of susceptibility,clinical expression,treatment response and long-term outcome.Data synthesized from an extensive literature analysis utilizing PubMed,Scopus,and Web of Science in this review shows that women experience ON far more frequently–with female-to-male ratios ranging from 3:1 in MS to almost 9:1 in AQP4-NMOSD–yet men,when affected,tend to accumulate irreversible neuro-axonal loss more rapidly.Sex-specific patterns arise at every biological stratum:X-linked gene dosage,epigenetic regulation,hormonal cycles from puberty through menopause,metabolic co-modifiers such as obesity and vitamin-D status,and psychosocial forces that influence healthcare utilization.By weaving these elements into an expanded narrative,the present review provides a detailed resource for clinicians and investigators aiming at gender-tailored management of ON. 展开更多
关键词 optic neuritis Gender differences Neuromyelitis optica spectrum disorder Myelin oligodendrocyte glycoprotein antibody disease optic nerve
暂未订购
Integrated Optical True Time Delay Phased Array Antenna Systems 被引量:1
7
作者 Qi Zihang Yang Linhui +1 位作者 Zhao Wenyu Li Xiuping 《China Communications》 2025年第5期152-172,共21页
The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled p... The integrated optical true time delay phased array antenna system has the advantages of high bandwidth,small size,low loss and strong antiinterference capability,etc.The high integration of the optically controlled phased array antenna system is a necessary trend for the future development of the phased array,and it is also a major focus and difficulty in the current research of integrated microwave photonics.This paper firstly introduces the basic principle and development history of optical true time delay phased array antenna system based on microwave photonics,and briefly introduces the main implementation methods and integration platform of optical true time delay.Then,the application and development prospect of optical true time delay technology in beam control of phased array antenna system are mainly presented.Finally,according to the current research progress,the possible research directions of integrated optically controlled phased array antenna systems in the future are proposed. 展开更多
关键词 microwave photonics optical switch optical true time delay phased array antenna siliconbased integration
在线阅读 下载PDF
Single-beam optical trap-based surfaceenhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system 被引量:1
8
作者 Ning Sun Yuan Gan +4 位作者 Yujie Wu Xing Wang Shen Shen Yong Zhu Jie Zhang 《Opto-Electronic Advances》 2025年第2期16-27,共12页
In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to con... In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems. 展开更多
关键词 surface-enhanced Raman scattering optofluidic single-beam optical trap tapered optical fibers
在线阅读 下载PDF
Multi-scale feature fusion optical remote sensing target detection method 被引量:1
9
作者 BAI Liang DING Xuewen +1 位作者 LIU Ying CHANG Limei 《Optoelectronics Letters》 2025年第4期226-233,共8页
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram... An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved. 展开更多
关键词 multi scale feature fusion optical remote sensing feature map improve target detection ability optical remote sensing imagesfirstlythe target detection feature fusionto enrich semantic information spatial information
原文传递
Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury
10
作者 Tong Li Hui-Min Xing +4 位作者 Hai-Dong Qian Qiao Gao Sheng-Lan Xu Hua Ma Zai-Long Chi 《Neural Regeneration Research》 SCIE CAS 2025年第2期587-597,共11页
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit... Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy. 展开更多
关键词 EXOSOME miRNA neural progenitor cell NEURODEGENERATION NEUROINFLAMMATION neuroprotection optic nerve crush optic neuropathy retinal ganglion cell small extracellular vesicles
暂未订购
Real-time monitoring of rock fracture by true triaxial test using fiberoptic strain monitoring in adjacent wells 被引量:1
11
作者 Yuanhang Zhang Tiankui Guo +5 位作者 Ming Chen Zhanqing Qu Zunpeng Hu Bo Zhang Linrui Xue Yunpeng Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3762-3772,共11页
The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of ke... The real-time monitoring of fracture propagation during hydraulic fracturing is crucial for obtaining a deeper understanding of fracture morphology and optimizing hydraulic fracture designs.Accurate measurements of key fracture parameters,such as the fracture height and width,are particularly important to ensure efficient oilfield development and precise fracture diagnosis.This study utilized the optical frequency domain reflectometer(OFDR)technique in physical simulation experiments to monitor fractures during indoor true triaxial hydraulic fracturing experiments.The results indicate that the distributed fiber optic strain monitoring technology can efficiently capture the initiation and expansion of fractures.In horizontal well monitoring,the fiber strain waterfall plot can be used to interpret the fracture width,initiation location,and expansion speed.The fiber response can be divided into three stages:strain contraction convergence,strain band formation,and postshutdown strain rate reversal.When the fracture does not contact the fiber,a dual peak strain phenomenon occurs in the fiber and gradually converges as the fracture approaches.During vertical well monitoring in adjacent wells,within the effective monitoring range of the fiber,the axial strain produced by the fiber can represent the fracture height with an accuracy of 95.6%relative to the actual fracture height.This study provides a new perspective on real-time fracture monitoring.The response patterns of fiber-induced strain due to fractures can help us better understand and assess the dynamic fracture behavior,offering significant value for the optimization of oilfield development and fracture diagnostic techniques. 展开更多
关键词 Fracture diagnostics Fiber-optic strain Fracture propagation True triaxial fracturing optical frequency domain reflectometer (OFDR)demodulation
在线阅读 下载PDF
Vibration sensor based on stretchable optical fiber and interferometric measurement
12
作者 WU Jia-jun XIE Kang +5 位作者 CAO Lei CAO Xuan LI Zhen-jia ZHAO Guo-shuai HE Jia-cheng TU Guo-jie 《中国光学(中英文)》 北大核心 2025年第5期1200-1208,共9页
Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c... Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%. 展开更多
关键词 stretchable optical fiber sensing fiber optic vibration sensor phase generated carrier
在线阅读 下载PDF
Artificial Intelligence in Nanophotonics:From Design to Optical Computing
13
作者 Yongqiang Hu Jingmin Huang +14 位作者 Junyi Li Yu Sui Jiarui Zhang Tao Zheng Wenxiao Wang Chengyi Zhu Qianyi Guo Lihua Li Xilin Zhang Nihong Chen Juan Chen Yitong Chen Xiaorui Zheng Zhongmin Yang Jiewei Chen 《Chinese Physics Letters》 2025年第8期333-353,共21页
The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and app... The bidirectional convergence of artificial intelligence and nanophotonics drives photonic technologies toward unprecedented levels of intelligence and efficiency,fundamentally reshaping their design paradigms and application boundaries.With its powerful data-driven and nonlinear optimization capabilities,artificial intelligence has become a powerful tool for optical design,enabling the inverse design of nanophotonics devices while accelerating the forward computation of electromagnetic responses.Conversely,nanophotonics provides a wave-based computational platform,giving rise to novel optical neural networks that achieve high-speed parallel computing and efficient information processing.This paper reviews the latest progress in the bidirectional field of artificial intelligence and nanophotonics,analyzes the basic principles of various applications from a universal perspective,comprehensively evaluates the advantages and limitations of different research methods,and makes a forwardlooking outlook on the bidirectional integration of artificial intelligence and nanophotonics,focusing on analyzing future development trends,potential applications,and challenges.The deep integration of artificial intelligence and nanophotonics is ushering in a new era for photonic technologies,offering unparalleled opportunities for fundamental research and industrial applications. 展开更多
关键词 optical designenabling inverse design nanophotonics devices NANOPHOTONICS photonic technologies optical design artificial intelligence design paradigms
原文传递
Optical Singularities in Photonic Microstructures with Rosette Symmetries:A Unified Theoretical Scheme
14
作者 Jie Yang Jiafu Wang +3 位作者 Xinmin Fu Yueting Pan Tie Jun Cui Xuezhi Zheng 《Engineering》 2025年第2期59-69,共11页
Optical singularities are topological defects of electromagnetic fields;they include phase singularity in scalar fields,polarization singularity in vector fields,and three-dimensional(3D)singularities such as optical ... Optical singularities are topological defects of electromagnetic fields;they include phase singularity in scalar fields,polarization singularity in vector fields,and three-dimensional(3D)singularities such as optical skyrmions.The exploitation of photonic microstructures to generate and manipulate optical singularities has attracted wide research interest in recent years,with many photonic microstructures having been devised to this end.Accompanying these designs,scattered phenomenological theories have been proposed to expound the working mechanisms behind individual designs.In this work,instead of focusing on a specific type of microstructure,we concentrate on the most common geometric features of these microstructures—namely,symmetries—and revisit the process of generating optical singularities in microstructures from a symmetry viewpoint.By systematically employing the projection operator technique in group theory,we develop a widely applicable theoretical scheme to explore optical singularities in microstructures with rosette(i.e.,rotational and reflection)symmetries.Our scheme agrees well with previously reported works and further reveals that the eigenmodes of a symmetric microstructure can support multiplexed phase singularities in different components,such as out-of-plane,radial,azimuthal,and left-and right-handed circular components.Based on these phase singularities,more complicated optical singularities may be synthesized,including C points,V points,L lines,Néel-and bubble-type optical skyrmions,and optical lattices,to name a few.We demonstrate that the topological invariants associated with optical singularities are protected by the symmetries of the microstructure.Lastly,based on symmetry arguments,we formulate a so-called symmetry matching condition to clarify the excitation of a specific type of optical singularity.Our work establishes a unified theoretical framework to explore optical singularities in photonic microstructures with symmetries,shedding light on the symmetry origin of multidimensional and multiplexed optical singularities and providing a symmetry perspective for exploring many singularity-related effects in optics and photonics. 展开更多
关键词 optical singularity optical vortex Photonic microstructures SYMMETRIES Group representation theory
在线阅读 下载PDF
Vectorial Digitelligent Optics for High-Resolution Non-Line-of-Sight Imaging
15
作者 Yinghui Guo Yunsong Lei +8 位作者 Mingbo Pu Fei Zhang Qi Zhang Xiaoyin Li Runzhe Zhang Zhibin Zhao Rui Zhou Yulong Fan Xiangang Luo 《Engineering》 2025年第2期70-78,共9页
Object imaging beyond the direct line of sight is significant for applications in robotic vision,remote sensing,autonomous driving,and many other areas.Reconstruction of a non-line-of-sight(NLOS)screen is a complex in... Object imaging beyond the direct line of sight is significant for applications in robotic vision,remote sensing,autonomous driving,and many other areas.Reconstruction of a non-line-of-sight(NLOS)screen is a complex inverse problem that comes with ultrafast time-resolved imager requirements and substantial computational demands to extract information from the multi-bounce scattered light.Consequently,the echo signal always suffers from serious deterioration in both intensity and shape,leading to limited resolution and image contrast.Here,we propose a concept of vectorial digitelligent optics for high-resolution NLOS imaging to cancel the wall’s scattering and refocus the light onto hidden targets for enhanced echo.In this approach,the polarization and wavefront of the laser spot are intelligently optimized via a feedback algorithm to form a near-perfect focusing pattern through a random scattering wall.By raster scanning the focusing spot across the object’s surface within the optical-memory-effect range of the wall,we obtain nearly diffraction-limited NLOS imaging with an enhanced signal-to-noise ratio.Our experimental results demonstrate a resolution of 0.40 mm at a distance of 0.35 m,reaching the diffraction limit of the system.Furthermore,we demonstrate that the proposed method is feasible for various complex NLOS scenarios.Our methods may open an avenue for active imaging,communication,and laser wireless power transfer. 展开更多
关键词 Non-line-of-sight imaging Vectorial digitelligent optics Spatial light modulator Digital optics Wavefront shaping Metasurface
在线阅读 下载PDF
Modeling and simulation of a reconfigurable multifunctional optical sensor
16
作者 Shaher DWIK Gurusamy SASIKALA 《Optoelectronics Letters》 2025年第4期205-211,共7页
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec... Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC). 展开更多
关键词 RECONFIGURABLE optical sensor alternate operating modes tracking systems MULTIFUNCTIONAL optical element position sensitive device psd sensor PSD
原文传递
Molecular mechanisms after optic nerve injury:Neurorepair strategies from a transcriptomic perspective
17
作者 Xiaxue Chen Muyang Wei Guangyu Li 《Neural Regeneration Research》 2026年第3期989-999,共11页
Retinal ganglion cells,a crucial component of the central nervous system,are often affected by irreversible visual impairment due to various conditions,including trauma,tumors,ischemia,and glaucoma.Studies have shown ... Retinal ganglion cells,a crucial component of the central nervous system,are often affected by irreversible visual impairment due to various conditions,including trauma,tumors,ischemia,and glaucoma.Studies have shown that the optic nerve crush model and glaucoma model are commonly used to study retinal ganglion cell injury.While these models differ in their mechanisms,both ultimately result in retinal ganglion cell injury.With advancements in high-throughput technologies,techniques such as microarray analysis,RNA sequencing,and single-cell RNA sequencing have been widely applied to characterize the transcriptomic profiles of retinal ganglion cell injury,revealing underlying molecular mechanisms.This review focuses on optic nerve crush and glaucoma models,elucidating the mechanisms of optic nerve injury and neuron degeneration induced by glaucoma through single-cell transcriptomics,transcriptome analysis,and chip analysis.Research using the optic nerve crush model has shown that different retinal ganglion cell subtypes exhibit varying survival and regenerative capacities following injury.Single-cell RNA sequencing has identified multiple genes associated with retinal ganglion cell protection and regeneration,such as Gal,Ucn,and Anxa2.In glaucoma models,high-throughput sequencing has revealed transcriptomic changes in retinal ganglion cells under elevated intraocular pressure,identifying genes related to immune response,oxidative stress,and apoptosis.These genes are significantly upregulated early after optic nerve injury and may play key roles in neuroprotection and axon regeneration.Additionally,CRISPR-Cas9 screening and ATAC-seq analysis have identified key transcription factors that regulate retinal ganglion cell survival and axon regeneration,offering new potential targets for neurorepair strategies in glaucoma.In summary,single-cell transcriptomic technologies provide unprecedented insights into the molecular mechanisms underlying optic nerve injury,aiding in the identification of novel therapeutic targets.Future researchers should integrate advanced single-cell sequencing with multi-omics approaches to investigate cell-specific responses in retinal ganglion cell injury and regeneration.Furthermore,computational models and systems biology methods could help predict molecular pathways interactions,providing valuable guidance for clinical research on optic nerve regeneration and repair. 展开更多
关键词 GLAUCOMA microarray NEURODEGENERATION optic nerve crush optic nerve regeneration retinal ganglion cell RNA sequencing single-cell RNA sequencing TRANSCRIPTOME
暂未订购
Research on optical soliton characteristics GaSb-based~2μm wavelength two-section integrated optical chip
18
作者 Wenjun Yu Zhongliang Qiao +12 位作者 Xiang Li Jia Xu Brian Sia Dengqun Weng Xiaohu Hou Zaijin Li Lin Li Hao Chen Zhibin Zhao Yi Qu Chongyang Liu Hong Wang Yu Zhang Zhichuan Niu 《Journal of Semiconductors》 2025年第11期56-68,共13页
The optical soliton characteristics of GaSb-based~2μm wavelength integrated optical chips have broad application prospects in optoelectronic fields such as optical communications,infrared countermeasures,and gas envi... The optical soliton characteristics of GaSb-based~2μm wavelength integrated optical chips have broad application prospects in optoelectronic fields such as optical communications,infrared countermeasures,and gas environment monitoring.In the research of two-section integrated optical chips,more attention is paid to their passive mode-locked characteristics.The ability of its structure to generate stable soliton transmission has not yet been studied,which will limit its further application in high-performance near-mid infrared optoelectronic technology.In this paper,we design and prepare a GaSb-based~2μm wave-length two-section integrated semiconductor laser chip structure,and test and analyze its related properties of soliton,includ-ing power−injection current−voltage(P−I−V),temperature and mode-locked characteristics.Experimental results show that the chip can achieve stable mode-locked operation at nearly~2μm wavelength and present the working characteristics of near opti-cal soliton states and multi-peak optical soliton states.By comparing and analyzing the measured optical pulse sequence curve with the numerical fitting based on the pure fourth order soliton approximation solution,it is confirmed that the two-section integrated optical chip structure can generate stable transmission of multi-peak optical soliton.This provides a research direc-tion for developing near-mid infrared mode-locked integrated optical chips with high-performance property of optical soliton. 展开更多
关键词 integrated optical chip GaSb-based MODE-LOCKED optical soliton
在线阅读 下载PDF
Enhancement Methods for Chiral Optical Signals by Tailoring Optical Fields and Nanostructures
19
作者 Hanqing Cai Liangliang Gu +1 位作者 Haifeng Hu Qiwen Zhan 《Engineering》 2025年第2期25-43,共19页
The unique property of chirality is widely used in various fields.In the past few decades,a great deal of research has been conducted on the interactions between light and matter,resulting in significant technical adv... The unique property of chirality is widely used in various fields.In the past few decades,a great deal of research has been conducted on the interactions between light and matter,resulting in significant technical advancements in the precise manipulation of light field wavefronts.In this review,which focuses on current chiral optics research,we introduce the fundamental theory of chirality and highlight the latest achievements in enhancing chiral signals through artificial nano-manufacturing technology,with a particular focus on mechanisms such as light scattering and Mie resonance used to amplify chiral signals.By providing an overview of enhanced chiral signals,this review aims to provide researchers with an indepth understanding of chiral phenomena and its versatile applications in various domains. 展开更多
关键词 Mie scattering optical chirality Circular dichroism Orbital angular momentum Bound states in the continuum Nonlinear optics
在线阅读 下载PDF
Nonlinear Interference-Aware Routing,Wavelength and Power Allocation in C+L+S Multi-Band Optical Networks
20
作者 Zhang Xu Xie Wang +4 位作者 Feng Chuan Zeng Hankun Zhou Shanshan Zhang Fan Gong Xiaoxue 《China Communications》 2025年第4期129-142,共14页
Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck res... Multi-band optical networks are a potential technology for increasing network capacity.However,the strong interference and non-uniformity between wavelengths in multi-band optical networks have become a bottleneck restricting the transmission capacity of multi-band optical networks.To overcome these challenges,it is particularly important to implement optical power optimization targeting wavelength differences.Therefore,based on the generalized Gaussian noise model,we first formulate an optimization model for the problems of routing,modulation format,wavelength,and power allocation in C+L+S multi-band optical networks.Our objective function is to maximize the average link capacity of the network while ensuring that the Optical Signal-to-Noise(OSNR)threshold of the service request is not exceeded.Next,we propose a NonLinear Interferenceaware(NLI-aware)routing,modulation format,wavelength,and power allocation algorithm.Finally,we conduct simulations under different test conditions.The simulation results indicate that our algorithm can effectively reduce the blocking probability by 23.5%and improve the average link capacity by 3.78%in C+L+S multi-band optical networks. 展开更多
关键词 multiband optical communications multiband optical networks power allocation wavelength assignment
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部