In this note a multidimensional Hausdorff truncated operator-valued moment problem, from the point of view of “stability concept” of the number of atoms of the obtained atomic, operator-valued representing measure f...In this note a multidimensional Hausdorff truncated operator-valued moment problem, from the point of view of “stability concept” of the number of atoms of the obtained atomic, operator-valued representing measure for the terms of a finite, positively define kernel of operators, is studied. The notion of “stability of the dimension” in truncated, scalar moment problems was introduced in [1]. In this note, the concept of “stability” of the algebraic dimension of the obtained Hilbert space from the space of the polynomials of finite, total degree with respect to the null subspace of a unital square positive functional, in [1], is adapted to the concept of stability of the algebraic dimension of the Hilbert space obtained as the separated space of some space of vectorial functions with respect to the null subspace of a hermitian square positive functional attached to a positive definite kernel of operators. In connection with the stability of the dimension of such obtained Hilbert space, a Hausdorff truncated operator-valued moment problem and the stability of the number of atoms of the representing measure for the terms of the given operator kernel, in this note, is studied.展开更多
In this paper, it is proved that if A is a normal proper contraction on Hilbert space H and F(z) = U(z) + iV(z) is operator-valued analytic on the unit disc Delta and 0 < p < 1, then parallel to F(A)parallel to(...In this paper, it is proved that if A is a normal proper contraction on Hilbert space H and F(z) = U(z) + iV(z) is operator-valued analytic on the unit disc Delta and 0 < p < 1, then parallel to F(A)parallel to(p) less than or equal to parallel to F(0)parallel to(p) + C-p (1 - parallel to A parallel to)(-2) [GRAPHICS]展开更多
The weighted Sobolev-Lions type spaces W pl,γ(Ω; E0, E) = W pl,γ(Ω; E) ∩ Lp,γ (Ω; E0) are studied, where E0, E are two Banach spaces and E0 is continuously and densely embedded on E. A new concept of capa...The weighted Sobolev-Lions type spaces W pl,γ(Ω; E0, E) = W pl,γ(Ω; E) ∩ Lp,γ (Ω; E0) are studied, where E0, E are two Banach spaces and E0 is continuously and densely embedded on E. A new concept of capacity of region Ω ∈ Rn in W pl,γ(; E0, E) is introduced. Several conditions in terms of capacity of region Ω and interpolations of E0 and E are found such that ensure the continuity and compactness of embedding operators. In particular, the most regular class of interpolation spaces Eα between E0 and E, depending of α and l, are found such that mixed differential operators Dα are bounded and compact from W pl,γ(Ω; E0, E) to Eα-valued Lp,γ spaces. In applications, the maximal regularity for differential-operator equations with parameters are studied.展开更多
The author gives a characterization of the Fourier transforms of bounded bilinear forms on C*(S1)×C*(S2) of two foundation semigroups S1 and S2 in terms of Jordan *-representations, hemimogeneous random fi...The author gives a characterization of the Fourier transforms of bounded bilinear forms on C*(S1)×C*(S2) of two foundation semigroups S1 and S2 in terms of Jordan *-representations, hemimogeneous random fields, and as well as weakly harmonizable random fields of S1 and S2 into Hilbert spaces.展开更多
This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal...This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of spaces E0 and E. In particular, the most regular class of interpolation spaces Eα between E0, E depending on α and the order of space are found and the boundedness of differential operators D^α from this space to Eα-valued Lp,γ spaces is proved. These results are applied to partial differential-operator equations with parameters to obtain conditions that guarantee the maximal Lp,γ regularity and R-positivity uniformly with respect to these parameters.展开更多
This study focuses on the anisotropic Besov-Lions type spaces B^lp,θ(Ω;E0,E) associated with Banach spaces E0 and E. Under certain conditions, depending on l =(l1,l2,…,ln)and α=(α1,α2,…,αn),the most regu...This study focuses on the anisotropic Besov-Lions type spaces B^lp,θ(Ω;E0,E) associated with Banach spaces E0 and E. Under certain conditions, depending on l =(l1,l2,…,ln)and α=(α1,α2,…,αn),the most regular class of interpolation space Eα between E0 and E are found so that the mixed differential operators D^α are bounded and compact, from B^l+s p,θ(Ω;E0,E) to B^s p,θ(Ω;Eα).These results are applied to concrete vector-valued function spaces and to anisotropic differential-operator equations with parameters to obtain conditions that guarantee the uniform B separability with respect to these parameters. By these results the maximal B-regularity for parabolic Cauchy problem is obtained. These results are also applied to infinite systems of the quasi-elliptic partial differential equations and parabolic Cauchy problems with parameters to obtain sufficient conditions that ensure the same properties.展开更多
Necessary and sufficient conditions for compactness of sets in Banach space valued Besov class Bp,q s(Ω;E) is derived.The embedding theorems in Besov-Lions type spaces B l,s p,q(Ω;E0,E) are studied,where E0,E are tw...Necessary and sufficient conditions for compactness of sets in Banach space valued Besov class Bp,q s(Ω;E) is derived.The embedding theorems in Besov-Lions type spaces B l,s p,q(Ω;E0,E) are studied,where E0,E are two Banach spaces and E 0 E.The most regular class of interpolation space E α,between E 0 and E are found such that the mixed differential operator D α is bounded and compact from B p,q l,s (Ω;E 0,E) to B p,q s (Ω;E α) and Ehrling-Nirenberg-Gagliardo type sharp estimates established.By using these results the separability of differential operators with variable coefficients and the maximal B-regularity of parabolic Cauchy problem are obtained.In applications,the infinite systems of the elliptic partial differential equations and parabolic Cauchy problems are studied.展开更多
The unique continuation theorems for the anisotropic partial differential-operator equations with variable coefficients in Banach-valued L p -spaces are studied. To obtain the uniform maximal regularity and the Carlem...The unique continuation theorems for the anisotropic partial differential-operator equations with variable coefficients in Banach-valued L p -spaces are studied. To obtain the uniform maximal regularity and the Carleman type estimates for parameter depended differential-operator equations, the sufficient conditions are founded. By using these facts, the unique continuation properties are established. In the application part, the unique continuation properties and Carleman estimates for finite or infinite systems of quasielliptic partial differential equations are studied.展开更多
文摘In this note a multidimensional Hausdorff truncated operator-valued moment problem, from the point of view of “stability concept” of the number of atoms of the obtained atomic, operator-valued representing measure for the terms of a finite, positively define kernel of operators, is studied. The notion of “stability of the dimension” in truncated, scalar moment problems was introduced in [1]. In this note, the concept of “stability” of the algebraic dimension of the obtained Hilbert space from the space of the polynomials of finite, total degree with respect to the null subspace of a unital square positive functional, in [1], is adapted to the concept of stability of the algebraic dimension of the Hilbert space obtained as the separated space of some space of vectorial functions with respect to the null subspace of a hermitian square positive functional attached to a positive definite kernel of operators. In connection with the stability of the dimension of such obtained Hilbert space, a Hausdorff truncated operator-valued moment problem and the stability of the number of atoms of the representing measure for the terms of the given operator kernel, in this note, is studied.
文摘In this paper, it is proved that if A is a normal proper contraction on Hilbert space H and F(z) = U(z) + iV(z) is operator-valued analytic on the unit disc Delta and 0 < p < 1, then parallel to F(A)parallel to(p) less than or equal to parallel to F(0)parallel to(p) + C-p (1 - parallel to A parallel to)(-2) [GRAPHICS]
文摘The weighted Sobolev-Lions type spaces W pl,γ(Ω; E0, E) = W pl,γ(Ω; E) ∩ Lp,γ (Ω; E0) are studied, where E0, E are two Banach spaces and E0 is continuously and densely embedded on E. A new concept of capacity of region Ω ∈ Rn in W pl,γ(; E0, E) is introduced. Several conditions in terms of capacity of region Ω and interpolations of E0 and E are found such that ensure the continuity and compactness of embedding operators. In particular, the most regular class of interpolation spaces Eα between E0 and E, depending of α and l, are found such that mixed differential operators Dα are bounded and compact from W pl,γ(Ω; E0, E) to Eα-valued Lp,γ spaces. In applications, the maximal regularity for differential-operator equations with parameters are studied.
基金the Research Project No. 830104the Center of Excellence for Mathematics of the University of Isfahan for their financial supports
文摘The author gives a characterization of the Fourier transforms of bounded bilinear forms on C*(S1)×C*(S2) of two foundation semigroups S1 and S2 in terms of Jordan *-representations, hemimogeneous random fields, and as well as weakly harmonizable random fields of S1 and S2 into Hilbert spaces.
基金This work is supported by the grant of Istanbul University (Project UDP-227/18022004)
文摘This study focuses on vector-valued anisotropic Sobolev-Lions spaces associated with Banach spaces E0, E. Several conditions are found that ensure the continuity and compactness of embedding operators that are optimal regular in these spaces in terms of interpolations of spaces E0 and E. In particular, the most regular class of interpolation spaces Eα between E0, E depending on α and the order of space are found and the boundedness of differential operators D^α from this space to Eα-valued Lp,γ spaces is proved. These results are applied to partial differential-operator equations with parameters to obtain conditions that guarantee the maximal Lp,γ regularity and R-positivity uniformly with respect to these parameters.
文摘This study focuses on the anisotropic Besov-Lions type spaces B^lp,θ(Ω;E0,E) associated with Banach spaces E0 and E. Under certain conditions, depending on l =(l1,l2,…,ln)and α=(α1,α2,…,αn),the most regular class of interpolation space Eα between E0 and E are found so that the mixed differential operators D^α are bounded and compact, from B^l+s p,θ(Ω;E0,E) to B^s p,θ(Ω;Eα).These results are applied to concrete vector-valued function spaces and to anisotropic differential-operator equations with parameters to obtain conditions that guarantee the uniform B separability with respect to these parameters. By these results the maximal B-regularity for parabolic Cauchy problem is obtained. These results are also applied to infinite systems of the quasi-elliptic partial differential equations and parabolic Cauchy problems with parameters to obtain sufficient conditions that ensure the same properties.
文摘Necessary and sufficient conditions for compactness of sets in Banach space valued Besov class Bp,q s(Ω;E) is derived.The embedding theorems in Besov-Lions type spaces B l,s p,q(Ω;E0,E) are studied,where E0,E are two Banach spaces and E 0 E.The most regular class of interpolation space E α,between E 0 and E are found such that the mixed differential operator D α is bounded and compact from B p,q l,s (Ω;E 0,E) to B p,q s (Ω;E α) and Ehrling-Nirenberg-Gagliardo type sharp estimates established.By using these results the separability of differential operators with variable coefficients and the maximal B-regularity of parabolic Cauchy problem are obtained.In applications,the infinite systems of the elliptic partial differential equations and parabolic Cauchy problems are studied.
文摘The unique continuation theorems for the anisotropic partial differential-operator equations with variable coefficients in Banach-valued L p -spaces are studied. To obtain the uniform maximal regularity and the Carleman type estimates for parameter depended differential-operator equations, the sufficient conditions are founded. By using these facts, the unique continuation properties are established. In the application part, the unique continuation properties and Carleman estimates for finite or infinite systems of quasielliptic partial differential equations are studied.