The global public HPC(high-power charging)network for EVs(electric vehicles)is rapidly expanding.This growth is crucial for supporting the increasing adoption of EVs but highlights the industry’s early stage.Regional...The global public HPC(high-power charging)network for EVs(electric vehicles)is rapidly expanding.This growth is crucial for supporting the increasing adoption of EVs but highlights the industry’s early stage.Regional maturity varies,with China leading due to strong government support,followed by Europe and the United States.A significant challenge is the lack of industry standards,causing inconsistencies in charger types and payment systems.Efforts are underway,to ensure interoperability and reliability.Interoperability is crucial for the success of EV HPC infrastructure,ensuring seamless integration among charge points,management systems,and service providers.Despite the use of protocols like the OCPP(Open Charge Point Protocol),variations in implementation create complexities.Ensuring uniform standards across the ecosystem is essential for reliability and efficiency.Vendor-specific error codes,which are more detailed than standardized codes,are vital for diagnosing issues but lack standardization,adding complexity.Addressing these challenges is key to supporting widespread EV adoption and enhancing user experience.To provide a compelling driver value proposition,EV charging services must be reliable and seamless.The operations and maintenance of the HPC network must be cost-effective and leverage the intelligence of the integrated ecosystem.The technical complexity of managing high-power DC charging,combined with diverse authentication and payment systems,results in numerous potential issues.Moving from reactive to predictive maintenance is essential for undisrupted operations and a smooth driver experience.Shell’s Intelligent Operations Technology Strategy incorporates GenAI elements in its advanced analytics and operational performance management tools.By ingesting big data from multiple sources across the EV ecosystem,Shell engineers can perform detailed pattern recognition and targeted troubleshooting.Monitoring,configurable alerting,and remote fixing based on auto-healing and targeted auto-allocation enhance charger availability and reduce downtime.This automation has evolved Shell’s maintenance and operations strategy from reactive to predictive,improving overall charger performance and user satisfaction.Key achievements include transitioning to prescriptive and preventive asset management approaches,significantly improving uptime and charging experience,and increasing commercial value through cost reduction and enhanced revenue.Future challenges include evolving OCPP,integrating data from non-OCPP systems,and ensuring interoperability across diverse systems.Standardization and cross-collaboration within the industry are essential for smooth interoperability,higher uptime,and increased CSR(charging success rate).Technological innovations will further shape the industry,promoting stabilization and efficiency as it matures.展开更多
Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-...Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-term and long-term spatial collaborative relationships among support agents and positions from long spatial–temporal trajectories. While the existing methods excel at recognizing collaborative behaviors from short trajectories, they often struggle with long spatial–temporal trajectories. To address this challenge, this paper introduces a dynamic graph method to enhance flight deck operation recognition. First, spatial–temporal collaborative relationships are modeled as a dynamic graph. Second, a discretized and compressed method is proposed to assign values to the states of this dynamic graph. To extract features that represent diverse collaborative relationships among agents and account for the duration of these relationships, a biased random walk is then conducted. Subsequently, the Swin Transformer is employed to comprehend spatial–temporal collaborative relationships, and a fully connected layer is applied to deck operation recognition. Finally, to address the scarcity of real datasets, a simulation pipeline is introduced to generate deck operations in virtual flight deck scenarios. Experimental results on the simulation dataset demonstrate the superior performance of the proposed method.展开更多
Our concern is to investigate controlled remote implementation of partially unknown operations with multiple layers.We first propose a scheme to realize the remote implementation of singlequbit operations belonging to...Our concern is to investigate controlled remote implementation of partially unknown operations with multiple layers.We first propose a scheme to realize the remote implementation of singlequbit operations belonging to the restricted sets.Then,the proposed scheme is extended to the case of single-qudit operations.As long as the controller and the higher-layer senders consent,the receiver can restore the desired state remotely operated by the sender.It is worth mentioning that the recovery operation is deduced by general formulas which clearly reveal the relationship with the measurement outcomes.For the sake of clarity,two specific examples with two levels are given respectively.In addition,we discuss the influence of amplitude-damping noise and utilize weak measurement and measurement reversal to effectively resist noise.展开更多
Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization an...Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.展开更多
With cutting-edge technologies and considering airline human-resource-saving,a single pilot in commercial jets could be technically feasible.Investigating changes in captains’natural behaviours are initially required...With cutting-edge technologies and considering airline human-resource-saving,a single pilot in commercial jets could be technically feasible.Investigating changes in captains’natural behaviours are initially required to comprehend the specific safe human performance envelope for safeguarding single-pilot flight,particularly in high-risk situations.This paper investigates how captains’performance transforms for fixing emergencies when operating from Dual-Pilot Operations(DPO)to Single-Pilot Operations(SPO)through a physiological-based approach.Twenty pilots flew an emergency-included flight with/without first officers’assistance.The neural activities and scanning behaviours were recorded using a 32-channel Electroencephalogram(EEG)and glasses-based eye tracker,with the observation and post-experiment questionnaires to evaluate the flight operations and pilots’perception.Flying alone,there was a significantly increased cortical activity in h and b waves over the frontal,parietal,and temporal lobes during the more complicated emergencies,and pilots focused less on the primary flight display while spending significantly more time scanning the other interfaces.The physiological fluctuating patterns associated with risky operations in SPO were highlighted by cross-correlating multimodal data.The experimental-based noteworthy insights may wish to inform commercial SPO measures to lessen the persistent physiological fluctuation,assisting airlines in creating SPO-oriented intelligent flight systems to give captains adequate support for assuring safer air transportation.展开更多
The rapid development of digital education provides new opportunities and challenges for teaching model innovation.This study aims to explore the application of the BOPPPS(Bridge-in,Objective,Pre-assessment,Participat...The rapid development of digital education provides new opportunities and challenges for teaching model innovation.This study aims to explore the application of the BOPPPS(Bridge-in,Objective,Pre-assessment,Participatory learning,Post-assessment,Summary)teaching method in the development of a blended teaching model for the Operations Research course under the background of digital education.In response to the characteristics of the course and the needs of the student group,the teaching design is reconstructed with a student-centered approach,increasing practical teaching links,improving the assessment and evaluation system,and effectively implementing it in conjunction with digital educational technology.This teaching model has shown significant effectiveness in the context of digital education,providing valuable experience and insights for the innovation of the Operations Research course.展开更多
Imaginarity has proven to be a valuable resource in various quantum information processing tasks.A natural question arises:can the imaginarity of quantum states be broadcast via real operations?In this work,we present...Imaginarity has proven to be a valuable resource in various quantum information processing tasks.A natural question arises:can the imaginarity of quantum states be broadcast via real operations?In this work,we present explicit structures for nonreal states whose imaginarity can be broadcast and cloned.That is,for a nonreal state,its imaginarity can be cloned if and only if it is a direct sum of several maximally imaginary states under orthogonal transformation,and its imaginarity can be broadcast if and only if it is a direct sum of a real state and some nonreal qubit states which are mixtures of two orthogonal maximally imaginary states under orthogonal transformation.In particular,we show that for a nonreal pure state,its imaginarity cannot be broadcast unless it is a maximally imaginary state.Furthermore,we derive a trade-off relation on the imaginarity broadcasting of pure states in terms of the measure of irreversibility of quantum states concerning real operations and the geometric measure of imaginarity.In addition,we demonstrate that any faithful measure of imaginarity is not superadditive.展开更多
Recently,PT Huadian Bukit Asam Power (HBAP) was awarded the"Zero Accident Award"by the Ministry of Manpower of the Republic of Indonesia.This national-level award for safe production in Indonesia serves to t...Recently,PT Huadian Bukit Asam Power (HBAP) was awarded the"Zero Accident Award"by the Ministry of Manpower of the Republic of Indonesia.This national-level award for safe production in Indonesia serves to testify to the enterprise's achievements in safe and stable operations from June 1,2018,to December 31,2023.展开更多
This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknow...This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme.展开更多
Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-ve...Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.展开更多
With the advent of Industry 4.0, smart construction sites have seen significant development in China. However, accidents involving digitized tower cranes continue to be a persistent issue. Among the contributing facto...With the advent of Industry 4.0, smart construction sites have seen significant development in China. However, accidents involving digitized tower cranes continue to be a persistent issue. Among the contributing factors, human unsafe behavior stands out as a primary cause for these incidents. This study aims to assess the human reliability of tower crane operations on smart construction sites. To proactively enhance safety measures, the research employs text mining techniques (TF-IDF-Truncated SVD-Complement NB) to identify patterns of human errors among tower crane operators. Building upon the SHEL model, the study categorizes behavioral factors affecting human reliability in the man-machine interface, leading to the establishment of the Performance Shaping Factors (PSFs) system. Furthermore, the research constructs an error impact indicator system for the intelligent construction site tower crane operator interface. Using the DEMATEL method, it analyzes the significance of various factors influencing human errors in tower crane operations. Additionally, the ISM-MICMAC method is applied to unveil the hierarchical relationships and driving-dependent connections among these influencing factors. The findings indicate that personal state, operating procedures, and physical environment directly impact human errors, while personal capability, technological environment, and one fundamental organizational management factor contribute indirectly. .展开更多
Commercial aircraft crews have experienced a trend from five-person crew to dual-pilot crew.Arised from both technological and market demands,Single Pilot Operations(SPO)is considered an important development directio...Commercial aircraft crews have experienced a trend from five-person crew to dual-pilot crew.Arised from both technological and market demands,Single Pilot Operations(SPO)is considered an important development direction in modern aviation technology.In this paper,starting from Dual-Pilot Operations(DPO),the piloting process,decision-making process and decisionmaking mode of DPO for commercial aircraft are studied to obtain the operational requirements of SPO.Then,based on above analysis,the operational mechanism of SPO is studied and the core technology of SPO mode is proposed.Next,a new closed frequent bicluster mining algorithm named FsCluster is proposed for the optimization of the SPO model,and the other efficient bicluster mining algorithm named TsCluster is proposed for the analysis and verification of the SPO model.Finally,a typical flight phase scenario is modelled by Magic System of System,and combined with the proposed algorithms for analysis and verification to determine whether the SPO mode can meet the DPO requirements.展开更多
Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization...Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization of use of production resources. However, it is necessary to measure the productivity, so that the system of measurement and control of manufacturing processes are an element critical as to ensure greater visibility of the flow's restrictions, minimized when detected properly. In this case, the automation of factory's measurement process can effectively contribute to ensuring the effectiveness of the function control of a manufacturing system. It is important to consider that the automation of the system of measurement and control of manufacturing processes, of complex environment, is heavily dependent of IT tools applied directly in the interface computational between the operation systems and the corporate systems. This heavy reliance, if exploited technically properly, allows that automation of the system of measurement and control of production makes the access to time real of availability of manufacturing process's data, such as processing time and setup time that it can export to a specialist software in programming production, for example, feasible. In this paper, the automation of the system of measurement and control of production is approached, in order to identify the main possibilities of the design of an information system capable to integrate the flow of information in an environment internal on manufacturing organizations, with emphasis in the digital manufacturing paradigm.展开更多
Objective: To study the public health Emergency Operations Centers(EOCs)in the US, the European Union, the UK and Australia, and summarize the good practice for the improvement of National Health Emergency Response Co...Objective: To study the public health Emergency Operations Centers(EOCs)in the US, the European Union, the UK and Australia, and summarize the good practice for the improvement of National Health Emergency Response Command Center in Chinese National Health and Family Planning Commission. Methods: Literature review was conducted to explore the EOCs of selected countries. Results: The study focused on EOC function, organizational structure, human resources and information management. The selected EOCs had the basic EOC functions of coordinating and commanding as well as the public health related functions such as monitoring the situation, risk assessment, and epidemiological briefings. The organizational structures of the EOCs were standardized, scalable and flexible. Incident Command System was the widely applied organizational structure with a strong preference. The EOCs were managed by a unit of emergency management during routine time and surge staff were engaged upon emergencies. The selected EOCs had clear information management framework including information collection, assessment and dissemination. Conclusions: The performance of National Health Emergency Response Command Center can be improved by learning from the good practice of the selected EOCs, including setting clear functions, standardizing the organizational structure, enhancing the human resource capacity and strengthening information management.展开更多
Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture wh...Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac- ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the LI.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.展开更多
Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot...Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot be executed in practice some time for no corresponding operating conditions. In order to determine a practi- cally feasible optimal plan and corresponding operating conditions of fluidized catalytic cracking unit (FCCU), a novel close-loop integrated strategy, including determination of a quasi-optimal plan, search of operating conditions of FCCU and revision of the production planning model, was proposed in this article. In the strategy, a generalized genetic algorithm (GA) coupled with a sequential process simulator of FCCU was applied to search operating conditions implementing the quasi-optimal plan of FCCU and output the optimal individual in the GA search as a final genetic individual. When no corresponding operating conditions were found, the final genetic individual based correction (FGIC) method was presented to revise the production planning model, and then a new quasi-optimal production plan was determined. The above steps were repeated until a practically feasible optimal plan and corresponding operating conditions of FCCU were obtained. The close-loop integrated strategy was validated by two cases, and it was indicated that the strategy was efficient in determining a practically executed optimal plan and corresponding operating conditions of FCCU.展开更多
Objective With the rapid development of mobile power and electronic vehicles, the application of lithium is in the ascendant, and the contradiction between its supply and demand is prominent.
Single Pilot Operations(SPO),as a NextGen concept of operation,can save both crew costs and human resources for airlines,and has attracted the attention of aviation researchers.To explore in advance the problems that ...Single Pilot Operations(SPO),as a NextGen concept of operation,can save both crew costs and human resources for airlines,and has attracted the attention of aviation researchers.To explore in advance the problems that the introduction of SPO into the aviation system would bring,the Human-Centered Design(HCD)approach has been widely used in the development of SPO.A systematic review of the progress of HCD approach in SPO research can promote further development of SPO.In this paper,the literature resources of SPO were firstly retrieved from scientific research databases by subject search and were used as the input of scientometric analysis to obtain the highly cited literature,the number of annual publications,and the co-authorship network,which enables readers to understand the research trends and research groups of current SPO.Secondly,the development,application,and research process of the HCD approach were introduced in detail,and the progress of the HCD approach in SPO research was reviewed systematically from three aspects:concept design,function allocation,and system evaluation.Finally,limitations of current SPO research and future research directions for applying the HCD approach to SPO were also discussed.展开更多
Arranging the retrieving sequence and making the operational plans for gantry cranes to enhance port efficiency have become vital issues for the container terminals. In this paper, the problem of retrieving containers...Arranging the retrieving sequence and making the operational plans for gantry cranes to enhance port efficiency have become vital issues for the container terminals. In this paper, the problem of retrieving containers from a yard in a given sequence is discussed as an important part of the ship-loading process. This problem is divided into three categories according to its optimization complexity, i.e., the retrieval problem of a crane with a single spreader(ACSS), the retrieval problem of a crane with multiple spreaders(ACMS), and the retrieval problem of multiple cranes with a single spreader(MCSS). Firstly, heuristic algorithms are proposed to develop a retrieving sequence for ACSS to reduce the operational time. Then, optimizing the assignment to multiple spreaders is conducted by exchanging the movements of the obtained retrieving sequence. Finally, the movements are further assigned to two cranes and integrated with the MCSS retrieval problem mentioned above.The numerical experiments show the effectiveness and practicability of the heuristic algorithms.展开更多
A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlat...A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.展开更多
文摘The global public HPC(high-power charging)network for EVs(electric vehicles)is rapidly expanding.This growth is crucial for supporting the increasing adoption of EVs but highlights the industry’s early stage.Regional maturity varies,with China leading due to strong government support,followed by Europe and the United States.A significant challenge is the lack of industry standards,causing inconsistencies in charger types and payment systems.Efforts are underway,to ensure interoperability and reliability.Interoperability is crucial for the success of EV HPC infrastructure,ensuring seamless integration among charge points,management systems,and service providers.Despite the use of protocols like the OCPP(Open Charge Point Protocol),variations in implementation create complexities.Ensuring uniform standards across the ecosystem is essential for reliability and efficiency.Vendor-specific error codes,which are more detailed than standardized codes,are vital for diagnosing issues but lack standardization,adding complexity.Addressing these challenges is key to supporting widespread EV adoption and enhancing user experience.To provide a compelling driver value proposition,EV charging services must be reliable and seamless.The operations and maintenance of the HPC network must be cost-effective and leverage the intelligence of the integrated ecosystem.The technical complexity of managing high-power DC charging,combined with diverse authentication and payment systems,results in numerous potential issues.Moving from reactive to predictive maintenance is essential for undisrupted operations and a smooth driver experience.Shell’s Intelligent Operations Technology Strategy incorporates GenAI elements in its advanced analytics and operational performance management tools.By ingesting big data from multiple sources across the EV ecosystem,Shell engineers can perform detailed pattern recognition and targeted troubleshooting.Monitoring,configurable alerting,and remote fixing based on auto-healing and targeted auto-allocation enhance charger availability and reduce downtime.This automation has evolved Shell’s maintenance and operations strategy from reactive to predictive,improving overall charger performance and user satisfaction.Key achievements include transitioning to prescriptive and preventive asset management approaches,significantly improving uptime and charging experience,and increasing commercial value through cost reduction and enhanced revenue.Future challenges include evolving OCPP,integrating data from non-OCPP systems,and ensuring interoperability across diverse systems.Standardization and cross-collaboration within the industry are essential for smooth interoperability,higher uptime,and increased CSR(charging success rate).Technological innovations will further shape the industry,promoting stabilization and efficiency as it matures.
基金co-supported by the National Key Research and Development Program of China(No. 2021YFB3301504)the National Natural Science Foundation of China (Nos. 62072415, 62036010, 42301526, 62372416 and 62472389)the National Natural Science Foundation of Henan Province, China (No. 242300421215)
文摘Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-term and long-term spatial collaborative relationships among support agents and positions from long spatial–temporal trajectories. While the existing methods excel at recognizing collaborative behaviors from short trajectories, they often struggle with long spatial–temporal trajectories. To address this challenge, this paper introduces a dynamic graph method to enhance flight deck operation recognition. First, spatial–temporal collaborative relationships are modeled as a dynamic graph. Second, a discretized and compressed method is proposed to assign values to the states of this dynamic graph. To extract features that represent diverse collaborative relationships among agents and account for the duration of these relationships, a biased random walk is then conducted. Subsequently, the Swin Transformer is employed to comprehend spatial–temporal collaborative relationships, and a fully connected layer is applied to deck operation recognition. Finally, to address the scarcity of real datasets, a simulation pipeline is introduced to generate deck operations in virtual flight deck scenarios. Experimental results on the simulation dataset demonstrate the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.62172341,12071132)the Natural Science Foundation of Henan Province of China(Grant No.242300420276)the Joint Fund of Henan Province Science and Technology R&D Program(Grant No.225200810032)。
文摘Our concern is to investigate controlled remote implementation of partially unknown operations with multiple layers.We first propose a scheme to realize the remote implementation of singlequbit operations belonging to the restricted sets.Then,the proposed scheme is extended to the case of single-qudit operations.As long as the controller and the higher-layer senders consent,the receiver can restore the desired state remotely operated by the sender.It is worth mentioning that the recovery operation is deduced by general formulas which clearly reveal the relationship with the measurement outcomes.For the sake of clarity,two specific examples with two levels are given respectively.In addition,we discuss the influence of amplitude-damping noise and utilize weak measurement and measurement reversal to effectively resist noise.
文摘Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.
基金supported by the Research Committee and the Department of Aeronautical and Aviation Engineering,The Hong Kong Polytechnic University,Hong Kong SAR,China(RH1W,ZVS9,RJX2,RLPA and CE1G)Cho Yin Yiu is a recipient of the Hong Kong PhD Fellowship(Reference number:PF21-62058)This study has been granted human ethics approval from the PolyU Institutional Review Board of The Hong Kong Polytechnic University(IRB Reference Number:HSEARS20210318002).
文摘With cutting-edge technologies and considering airline human-resource-saving,a single pilot in commercial jets could be technically feasible.Investigating changes in captains’natural behaviours are initially required to comprehend the specific safe human performance envelope for safeguarding single-pilot flight,particularly in high-risk situations.This paper investigates how captains’performance transforms for fixing emergencies when operating from Dual-Pilot Operations(DPO)to Single-Pilot Operations(SPO)through a physiological-based approach.Twenty pilots flew an emergency-included flight with/without first officers’assistance.The neural activities and scanning behaviours were recorded using a 32-channel Electroencephalogram(EEG)and glasses-based eye tracker,with the observation and post-experiment questionnaires to evaluate the flight operations and pilots’perception.Flying alone,there was a significantly increased cortical activity in h and b waves over the frontal,parietal,and temporal lobes during the more complicated emergencies,and pilots focused less on the primary flight display while spending significantly more time scanning the other interfaces.The physiological fluctuating patterns associated with risky operations in SPO were highlighted by cross-correlating multimodal data.The experimental-based noteworthy insights may wish to inform commercial SPO measures to lessen the persistent physiological fluctuation,assisting airlines in creating SPO-oriented intelligent flight systems to give captains adequate support for assuring safer air transportation.
文摘The rapid development of digital education provides new opportunities and challenges for teaching model innovation.This study aims to explore the application of the BOPPPS(Bridge-in,Objective,Pre-assessment,Participatory learning,Post-assessment,Summary)teaching method in the development of a blended teaching model for the Operations Research course under the background of digital education.In response to the characteristics of the course and the needs of the student group,the teaching design is reconstructed with a student-centered approach,increasing practical teaching links,improving the assessment and evaluation system,and effectively implementing it in conjunction with digital educational technology.This teaching model has shown significant effectiveness in the context of digital education,providing valuable experience and insights for the innovation of the Operations Research course.
基金supported by the National Key R&D Program of China under Grant No.2020YFA0712700the National Natural Science Foundation of China under Grant No.12341103the Youth Innovation Promotion Association of CAS under Grant No.2020002。
文摘Imaginarity has proven to be a valuable resource in various quantum information processing tasks.A natural question arises:can the imaginarity of quantum states be broadcast via real operations?In this work,we present explicit structures for nonreal states whose imaginarity can be broadcast and cloned.That is,for a nonreal state,its imaginarity can be cloned if and only if it is a direct sum of several maximally imaginary states under orthogonal transformation,and its imaginarity can be broadcast if and only if it is a direct sum of a real state and some nonreal qubit states which are mixtures of two orthogonal maximally imaginary states under orthogonal transformation.In particular,we show that for a nonreal pure state,its imaginarity cannot be broadcast unless it is a maximally imaginary state.Furthermore,we derive a trade-off relation on the imaginarity broadcasting of pure states in terms of the measure of irreversibility of quantum states concerning real operations and the geometric measure of imaginarity.In addition,we demonstrate that any faithful measure of imaginarity is not superadditive.
文摘Recently,PT Huadian Bukit Asam Power (HBAP) was awarded the"Zero Accident Award"by the Ministry of Manpower of the Republic of Indonesia.This national-level award for safe production in Indonesia serves to testify to the enterprise's achievements in safe and stable operations from June 1,2018,to December 31,2023.
基金This study was co-supported by the National Natural Science Foundation of China(Nos.62003371,62373379,62103446,61273351,62073343)the Outstanding Youth Fund of Hunan Provincial Natural Science,China(No.2022JJ20081)the Innovation Driven Project of Central South University,China(No.2023CXQD066).
文摘This paper investigates an analytical optimal pose tracking control problem for chaser spacecraft during the close-range proximity operations with a non-cooperative space target subject to attitude tumbling and unknown orbital maneuvering.Firstly,the relative translational motion between the orbital target and the chaser spacecraft is described in the Line-of-Sight(LOS)coordinate frame along with attitude quaternion dynamics.Then,based on the coupled 6-Degree of Freedom(DOF)pose dynamic model,an analytical optimal control action consisting of constrained optimal control value,application time and its duration are proposed via exploring the iterative sequential action control algorithm.Meanwhile,the global closed-loop asymptotic stability of the proposed predictive control action is presented and discussed.Compared with traditional proximity control schemes,the highlighting advantages are that the application time and duration of the devised controller is applied discretely in light of the influence of the instantaneous pose configuration on the pose tracking performance with less energy consumptions rather than at each sample time.Finally,three groups of illustrative examples are organized to validate the effectiveness of the proposed analytical optimal pose tracking control scheme.
基金supported by the National Natural Science Foundation of China(Grant No.12031004 and Grant No.12271474,61877054)the Fundamental Research Foundation for the Central Universities(Project No.K20210337)+1 种基金the Zhejiang University Global Partnership Fund,188170+194452119/003partially funded by a state task of Russian Fundamental Investigations(State Registration No.FFSG-2024-0002)。
文摘Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.
文摘With the advent of Industry 4.0, smart construction sites have seen significant development in China. However, accidents involving digitized tower cranes continue to be a persistent issue. Among the contributing factors, human unsafe behavior stands out as a primary cause for these incidents. This study aims to assess the human reliability of tower crane operations on smart construction sites. To proactively enhance safety measures, the research employs text mining techniques (TF-IDF-Truncated SVD-Complement NB) to identify patterns of human errors among tower crane operators. Building upon the SHEL model, the study categorizes behavioral factors affecting human reliability in the man-machine interface, leading to the establishment of the Performance Shaping Factors (PSFs) system. Furthermore, the research constructs an error impact indicator system for the intelligent construction site tower crane operator interface. Using the DEMATEL method, it analyzes the significance of various factors influencing human errors in tower crane operations. Additionally, the ISM-MICMAC method is applied to unveil the hierarchical relationships and driving-dependent connections among these influencing factors. The findings indicate that personal state, operating procedures, and physical environment directly impact human errors, while personal capability, technological environment, and one fundamental organizational management factor contribute indirectly. .
基金sponsored by the Natural Science Foundation of Shanghai(No.20ZR1427800)the New Young Teachers Launch Program of Shanghai Jiaotong University,China(No.20X100040036)+1 种基金the National Natural Science Foundation of China(No.61971273)the Development Program in Shaanxi Province of China(No.2021GY-032)。
文摘Commercial aircraft crews have experienced a trend from five-person crew to dual-pilot crew.Arised from both technological and market demands,Single Pilot Operations(SPO)is considered an important development direction in modern aviation technology.In this paper,starting from Dual-Pilot Operations(DPO),the piloting process,decision-making process and decisionmaking mode of DPO for commercial aircraft are studied to obtain the operational requirements of SPO.Then,based on above analysis,the operational mechanism of SPO is studied and the core technology of SPO mode is proposed.Next,a new closed frequent bicluster mining algorithm named FsCluster is proposed for the optimization of the SPO model,and the other efficient bicluster mining algorithm named TsCluster is proposed for the analysis and verification of the SPO model.Finally,a typical flight phase scenario is modelled by Magic System of System,and combined with the proposed algorithms for analysis and verification to determine whether the SPO mode can meet the DPO requirements.
文摘Manufacturing system, with high level of complexity and with a mix of semi-repetitive and repetitive products, to become productive, should seek the standardization of products and processes to obtain the optimization of use of production resources. However, it is necessary to measure the productivity, so that the system of measurement and control of manufacturing processes are an element critical as to ensure greater visibility of the flow's restrictions, minimized when detected properly. In this case, the automation of factory's measurement process can effectively contribute to ensuring the effectiveness of the function control of a manufacturing system. It is important to consider that the automation of the system of measurement and control of manufacturing processes, of complex environment, is heavily dependent of IT tools applied directly in the interface computational between the operation systems and the corporate systems. This heavy reliance, if exploited technically properly, allows that automation of the system of measurement and control of production makes the access to time real of availability of manufacturing process's data, such as processing time and setup time that it can export to a specialist software in programming production, for example, feasible. In this paper, the automation of the system of measurement and control of production is approached, in order to identify the main possibilities of the design of an information system capable to integrate the flow of information in an environment internal on manufacturing organizations, with emphasis in the digital manufacturing paradigm.
文摘Objective: To study the public health Emergency Operations Centers(EOCs)in the US, the European Union, the UK and Australia, and summarize the good practice for the improvement of National Health Emergency Response Command Center in Chinese National Health and Family Planning Commission. Methods: Literature review was conducted to explore the EOCs of selected countries. Results: The study focused on EOC function, organizational structure, human resources and information management. The selected EOCs had the basic EOC functions of coordinating and commanding as well as the public health related functions such as monitoring the situation, risk assessment, and epidemiological briefings. The organizational structures of the EOCs were standardized, scalable and flexible. Incident Command System was the widely applied organizational structure with a strong preference. The EOCs were managed by a unit of emergency management during routine time and surge staff were engaged upon emergencies. The selected EOCs had clear information management framework including information collection, assessment and dissemination. Conclusions: The performance of National Health Emergency Response Command Center can be improved by learning from the good practice of the selected EOCs, including setting clear functions, standardizing the organizational structure, enhancing the human resource capacity and strengthening information management.
文摘Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac- ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the LI.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.
文摘Production planning models generated by common modeling systems do not involve constraints for process operations, and a solution optimized by these models is called a quasi-optimal plan. The quasi-optimal plan cannot be executed in practice some time for no corresponding operating conditions. In order to determine a practi- cally feasible optimal plan and corresponding operating conditions of fluidized catalytic cracking unit (FCCU), a novel close-loop integrated strategy, including determination of a quasi-optimal plan, search of operating conditions of FCCU and revision of the production planning model, was proposed in this article. In the strategy, a generalized genetic algorithm (GA) coupled with a sequential process simulator of FCCU was applied to search operating conditions implementing the quasi-optimal plan of FCCU and output the optimal individual in the GA search as a final genetic individual. When no corresponding operating conditions were found, the final genetic individual based correction (FGIC) method was presented to revise the production planning model, and then a new quasi-optimal production plan was determined. The above steps were repeated until a practically feasible optimal plan and corresponding operating conditions of FCCU were obtained. The close-loop integrated strategy was validated by two cases, and it was indicated that the strategy was efficient in determining a practically executed optimal plan and corresponding operating conditions of FCCU.
基金financially supported by China Geological Survey(grant No.12120113057300)the National Natural Science Foundation of China(grant No.41502082)
文摘Objective With the rapid development of mobile power and electronic vehicles, the application of lithium is in the ascendant, and the contradiction between its supply and demand is prominent.
基金This research was funded by the Natural Science Foundation of Shanghai,China(No.20ZR1427800)the New Young Teachers Launch Program of Shanghai Jiao Tong University,China(No.20X100040036).
文摘Single Pilot Operations(SPO),as a NextGen concept of operation,can save both crew costs and human resources for airlines,and has attracted the attention of aviation researchers.To explore in advance the problems that the introduction of SPO into the aviation system would bring,the Human-Centered Design(HCD)approach has been widely used in the development of SPO.A systematic review of the progress of HCD approach in SPO research can promote further development of SPO.In this paper,the literature resources of SPO were firstly retrieved from scientific research databases by subject search and were used as the input of scientometric analysis to obtain the highly cited literature,the number of annual publications,and the co-authorship network,which enables readers to understand the research trends and research groups of current SPO.Secondly,the development,application,and research process of the HCD approach were introduced in detail,and the progress of the HCD approach in SPO research was reviewed systematically from three aspects:concept design,function allocation,and system evaluation.Finally,limitations of current SPO research and future research directions for applying the HCD approach to SPO were also discussed.
基金the National Natural Science Foundation of China(No.71172108)the Doctoral Program Foundation of Institutions of Higher Education of China(Nos.20122125110009 and 20132125120009)the Dalian Science and Technology Project(No.2012A17GX125)
文摘Arranging the retrieving sequence and making the operational plans for gantry cranes to enhance port efficiency have become vital issues for the container terminals. In this paper, the problem of retrieving containers from a yard in a given sequence is discussed as an important part of the ship-loading process. This problem is divided into three categories according to its optimization complexity, i.e., the retrieval problem of a crane with a single spreader(ACSS), the retrieval problem of a crane with multiple spreaders(ACMS), and the retrieval problem of multiple cranes with a single spreader(MCSS). Firstly, heuristic algorithms are proposed to develop a retrieving sequence for ACSS to reduce the operational time. Then, optimizing the assignment to multiple spreaders is conducted by exchanging the movements of the obtained retrieving sequence. Finally, the movements are further assigned to two cranes and integrated with the MCSS retrieval problem mentioned above.The numerical experiments show the effectiveness and practicability of the heuristic algorithms.
基金supported by the National Natural Science Foundation for Excellent Young Scholars(Grant 51222502)the National Natural Science Foundation of China(Grant 11172096)the Funds for State Key Laboratory of Construction Machinery(SKLCM2014-1)
文摘A new interval arithmetic method is proposed to solve interval functions with correlated intervals through which the overestimation problem existing in interval analysis could be significantly alleviated. The correlation between interval parameters is defined by the multidimensional parallelepiped model which is convenient to describe the correlative and independent interval variables in a unified framework. The original interval variables with correlation are transformed into the standard space without correlation,and then the relationship between the original variables and the standard interval variables is obtained. The expressions of four basic interval arithmetic operations, namely addition, subtraction, multiplication, and division, are given in the standard space. Finally, several numerical examples and a two-step bar are used to demonstrate the effectiveness of the proposed method.