Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to disp...Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.展开更多
The development of digital intelligent diagnostic and treatment technology has opened countless new opportunities for liver surgery from the era of digital anatomy to a new era of digital diagnostics,virtual surgery s...The development of digital intelligent diagnostic and treatment technology has opened countless new opportunities for liver surgery from the era of digital anatomy to a new era of digital diagnostics,virtual surgery simulation and using the created scenarios in real-time surgery using mixed reality.In this article,we described our experience on developing a dedicated 3 dimensional visualization and reconstruction software for surgeons to be used in advanced liver surgery and living donor liver transplantation.Furthermore,we shared the recent developments in the field by explaining the outreach of the software from virtual reality to augmented reality and mixed reality.展开更多
To better understand the biological structure of bigeye tuna(Thunnus obesus),albacore tuna(Thunnus alalunga),and longtail tuna(Thunnus tonggol),computed tomography(CT)was used to scan their bodies,and the data are pro...To better understand the biological structure of bigeye tuna(Thunnus obesus),albacore tuna(Thunnus alalunga),and longtail tuna(Thunnus tonggol),computed tomography(CT)was used to scan their bodies,and the data are processed by Mimics software.The skeleton,swim bladder,and muscle of the three tuna species are reconstructed in three dimensions.The surface area and volume of the corresponding parts are measured.The results show that the surface areas of the skeleton of longtail tuna,bigeye tuna,albacore tuna accounted for 28.18%,37.34%,33.45%of their whole body surface areas respectively;the surface areas of swim bladder accounted for 0,2.06%,2.72% of their whole body surface area respectively;and the surface areas of muscle accounted for 71.82%,60.6%,63.83%of their whole body surface areas respectively.And the volumes of skeleton accounted for 28.18%,8.05%,3.84%,the volumes of swim bladder accounted for 0,3.44%,0.92%,and the volumes of muscle accounted for 94.84%,88.51%,95.24%of their body volumes respectively.The swim bladder of the longtail tuna has degenerated,while that of the bigeye tuna is conical,exhibiting the highest volume proportion among the three species.In contrast,the swim bladder of the albacore tuna is both flat and elongated,resembling an arc.Additionally,the surface area and the volume of the bigeye tuna’s swim bladder differ signifi-cantly from those of the albacore tuna.Regarding skeletal and muscular structures,the bigeye tuna has the highest skeletal volume proportion(8.05%),whereas the albacore tuna exhibits the highest muscle volume proportion(95.24%).These morphological differences are closely associated with their respective habitats.This study demonstrates the potential of CT technology in fish morphological research,providing a reliable,non-invasive method for analyzing internal structures,quantifying organ characteristics and improving the accuracy of acoustic stock assessment.展开更多
In this paper, I will describe a completely new 3D module which can be called from within the well known ANTHEPROT program devoted to protein sequences analysis. This module allows fully interactive handling of high-q...In this paper, I will describe a completely new 3D module which can be called from within the well known ANTHEPROT program devoted to protein sequences analysis. This module allows fully interactive handling of high-quality 3D structures with various modes of representation (CA sticks, wireframe, ball and sticks, spacefill mod-els as well as surface, ribbons, Ramachandran plots). Alternatively, ANTHEPROT 3D can be used as an external program fully independant from the global package. It is available from the download page of the web site (http://antheprot-pbil.ibcp.fr/). More than 2800 downloads last year were recorded since the program was delivered.展开更多
Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The resul...A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.展开更多
A submergible robot model has been presented, and for 3D printing measures, their parts have been modified enough. It has been shown in our design that using printable connectors—a few engines and weight arrangements...A submergible robot model has been presented, and for 3D printing measures, their parts have been modified enough. It has been shown in our design that using printable connectors—a few engines and weight arrangements can be carried out, permitting distinctive moving prospects. After presenting our configuration and delineating a bunch of potential structures, a helpful model dependent on open-source equipment and programming arrangements has been presented conditionally. The model can be effectively tried in a few makes-a plunge streams and lakes throughout the planet. The unwavering quality of the printed models can be strained distinctly in generally shallow waters. Nonetheless, we accept that their accessibility will inspire the overall population to construct and test submerged robots, subsequently accelerating the improvement of imaginative arrangements and applications.展开更多
This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand ...This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand the response of these advanced materials under extreme conditions, which is crucial for applications in aerospace, military, and other high-performance industries. SupercompositeTM (CZE) prepreg, made up of a 3K plain weave carbon fabric with milled carbon fibers as interlaminar reinforcements impregnated with epoxy, is used to create SupercompositeTM (CZE) laminates. A woven carbon composite (CBE) laminate was also created using 3K plain weave Carbon/Epoxy (CBE) prepreg. Both types of laminates were designed and fabricated using the autoclave process. The dynamic behaviors of CZE and CBE laminate under transverse compression loads were evaluated using a modified Split Hopkinson Pressure Bar (SHPB). The study found that the 3D reinforcement with milled carbon fibers significantly affected the dynamic behavior of the CZE laminate. Stereo imaging videos, captured using two SHIMADZU high-speed video cameras in shock tube experiments, recorded the time history of back surface deflection. The plate specimens exhibited low deflections without any visible damage. The experimentally observed center point deflections of the CZE plates decayed sooner than those of the CBE laminates, indicating an improvement in damping due to the presence of 3D reinforced milled carbon fibers. This research shows that optimized utilization of milled carbon fibers as 3D reinforcement can withstand high stress in the thickness direction and higher energy absorption when subjected to impact and high strain-rate loading.展开更多
To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC syst...To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC system is divided into the task layer and the motion layer. A five-axis transformation unit is integrated into the motion layer. After classifying five-axis machines into different types and analyzing their geometry information, the five-axis kinematic library is designed according to the abstract factory pattern. Furthermore, by taking CA spindle- tilting machine as an example, the forward and the inverse kinematic transformations are deduced. Based on the new software architecture and the five-axis kinematic library, algorithms of RTCP (rotation tool center point control) and 3D radius compensation for end-milling are designed and realized. The milling results show that, with five-axis functions based on such software struc- ture, the instructions with respect to the cutter's position and orientation can be directly carried out in the CNC system.展开更多
文摘Purpose: To clarify the effectiveness of 3-D delivery animation software for the mother’s and husband’s satisfaction with delivery. Subjects and Method: We independently developed a software application used to display the pelvic region and explain the labor process. The study involved a collaboration with hospital staff who recruited 18 primiparous and 18 multiparous mothers who were hospitalized for delivery at Facility A. The midwife explained the process of delivery using the “Delivery Animation Software”. A self-administered, anonymous questionnaire was distributed and analyzed separately for primiparous and multiparous mothers and their husbands. Results: 1) For both primiparous and multiparous couples, both mothers and their husbands gained a significantly higher level of understanding after delivery than during pregnancy. 2) The Self-Evaluation Scale for Experience of Delivery results were as follows: “I did my best for the baby even if it was painful” was selected more often for “birth coping skills”;“reliable medical staff” was selected more often for “physiological birth process”;“the birth progressed as I expected” was selected frequently by primiparous mothers;and “the birth progressed smoothly” was selected often by multiparous mothers. 3) In terms of husbands’ satisfaction with the delivery, “I was satisfied with the delivery”, “I was given an easy-to-understand explanation”, and “They explained the process to me” was selected of primiparous and multiparous fathers. 4) All primiparous and multiparous mothers positively evaluated whether the delivery animation was helpful in understanding the process of delivery. Conclusion: The delivery animation was effective in improving the understanding and satisfaction of both the mothers and their husbands.
文摘The development of digital intelligent diagnostic and treatment technology has opened countless new opportunities for liver surgery from the era of digital anatomy to a new era of digital diagnostics,virtual surgery simulation and using the created scenarios in real-time surgery using mixed reality.In this article,we described our experience on developing a dedicated 3 dimensional visualization and reconstruction software for surgeons to be used in advanced liver surgery and living donor liver transplantation.Furthermore,we shared the recent developments in the field by explaining the outreach of the software from virtual reality to augmented reality and mixed reality.
基金funded by the National Key R&D Pro-gram(No.2023YFD2401301)the R&D Program of CNFC Overseas Fishery Co.,Ltd.(No.COFC-C-F-2024-004).
文摘To better understand the biological structure of bigeye tuna(Thunnus obesus),albacore tuna(Thunnus alalunga),and longtail tuna(Thunnus tonggol),computed tomography(CT)was used to scan their bodies,and the data are processed by Mimics software.The skeleton,swim bladder,and muscle of the three tuna species are reconstructed in three dimensions.The surface area and volume of the corresponding parts are measured.The results show that the surface areas of the skeleton of longtail tuna,bigeye tuna,albacore tuna accounted for 28.18%,37.34%,33.45%of their whole body surface areas respectively;the surface areas of swim bladder accounted for 0,2.06%,2.72% of their whole body surface area respectively;and the surface areas of muscle accounted for 71.82%,60.6%,63.83%of their whole body surface areas respectively.And the volumes of skeleton accounted for 28.18%,8.05%,3.84%,the volumes of swim bladder accounted for 0,3.44%,0.92%,and the volumes of muscle accounted for 94.84%,88.51%,95.24%of their body volumes respectively.The swim bladder of the longtail tuna has degenerated,while that of the bigeye tuna is conical,exhibiting the highest volume proportion among the three species.In contrast,the swim bladder of the albacore tuna is both flat and elongated,resembling an arc.Additionally,the surface area and the volume of the bigeye tuna’s swim bladder differ signifi-cantly from those of the albacore tuna.Regarding skeletal and muscular structures,the bigeye tuna has the highest skeletal volume proportion(8.05%),whereas the albacore tuna exhibits the highest muscle volume proportion(95.24%).These morphological differences are closely associated with their respective habitats.This study demonstrates the potential of CT technology in fish morphological research,providing a reliable,non-invasive method for analyzing internal structures,quantifying organ characteristics and improving the accuracy of acoustic stock assessment.
文摘In this paper, I will describe a completely new 3D module which can be called from within the well known ANTHEPROT program devoted to protein sequences analysis. This module allows fully interactive handling of high-quality 3D structures with various modes of representation (CA sticks, wireframe, ball and sticks, spacefill mod-els as well as surface, ribbons, Ramachandran plots). Alternatively, ANTHEPROT 3D can be used as an external program fully independant from the global package. It is available from the download page of the web site (http://antheprot-pbil.ibcp.fr/). More than 2800 downloads last year were recorded since the program was delivered.
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
文摘A 3-D finite-element numerical simulation model of temperature field for CIESC casting solidification process was developed with the aid of ANSYS software and a series of corresponding experiments were made. The results showed that the good agreement was obtained between the numerical simulation and the experiments. Based on the numerical simulation results, the characteristics of temperature distribution in the castings during CIESC solidification process were analyzed and summarized. According to the G/R-1/2 method and numerical simulation results, there is no any shrinkage defect in the CIESC casting and structure or casting is fine and compact.
文摘A submergible robot model has been presented, and for 3D printing measures, their parts have been modified enough. It has been shown in our design that using printable connectors—a few engines and weight arrangements can be carried out, permitting distinctive moving prospects. After presenting our configuration and delineating a bunch of potential structures, a helpful model dependent on open-source equipment and programming arrangements has been presented conditionally. The model can be effectively tried in a few makes-a plunge streams and lakes throughout the planet. The unwavering quality of the printed models can be strained distinctly in generally shallow waters. Nonetheless, we accept that their accessibility will inspire the overall population to construct and test submerged robots, subsequently accelerating the improvement of imaginative arrangements and applications.
文摘This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand the response of these advanced materials under extreme conditions, which is crucial for applications in aerospace, military, and other high-performance industries. SupercompositeTM (CZE) prepreg, made up of a 3K plain weave carbon fabric with milled carbon fibers as interlaminar reinforcements impregnated with epoxy, is used to create SupercompositeTM (CZE) laminates. A woven carbon composite (CBE) laminate was also created using 3K plain weave Carbon/Epoxy (CBE) prepreg. Both types of laminates were designed and fabricated using the autoclave process. The dynamic behaviors of CZE and CBE laminate under transverse compression loads were evaluated using a modified Split Hopkinson Pressure Bar (SHPB). The study found that the 3D reinforcement with milled carbon fibers significantly affected the dynamic behavior of the CZE laminate. Stereo imaging videos, captured using two SHIMADZU high-speed video cameras in shock tube experiments, recorded the time history of back surface deflection. The plate specimens exhibited low deflections without any visible damage. The experimentally observed center point deflections of the CZE plates decayed sooner than those of the CBE laminates, indicating an improvement in damping due to the presence of 3D reinforced milled carbon fibers. This research shows that optimized utilization of milled carbon fibers as 3D reinforcement can withstand high stress in the thickness direction and higher energy absorption when subjected to impact and high strain-rate loading.
基金supported by the National Basic Research Program of China (No. 2011CB302400)the Important National Science & Technology Specific Projects (No. 2013ZX04007031).
文摘To implement five-axis functions in CNC system, based on domestic system Lan Tian series, an improved design method for the system software structure is proposed in this paper. The numerical control kernel of CNC system is divided into the task layer and the motion layer. A five-axis transformation unit is integrated into the motion layer. After classifying five-axis machines into different types and analyzing their geometry information, the five-axis kinematic library is designed according to the abstract factory pattern. Furthermore, by taking CA spindle- tilting machine as an example, the forward and the inverse kinematic transformations are deduced. Based on the new software architecture and the five-axis kinematic library, algorithms of RTCP (rotation tool center point control) and 3D radius compensation for end-milling are designed and realized. The milling results show that, with five-axis functions based on such software struc- ture, the instructions with respect to the cutter's position and orientation can be directly carried out in the CNC system.