期刊文献+
共找到826篇文章
< 1 2 42 >
每页显示 20 50 100
Enhancing Respiratory Sound Classification Based on Open-Set Semi-Supervised Learning
1
作者 Won-Yang Cho Sangjun Lee 《Computers, Materials & Continua》 2025年第8期2847-2863,共17页
The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases.However,auscultation is highly subjective,making it challenging to analyze respiratory sounds accurately.Although d... The classification of respiratory sounds is crucial in diagnosing and monitoring respiratory diseases.However,auscultation is highly subjective,making it challenging to analyze respiratory sounds accurately.Although deep learning has been increasingly applied to this task,most existing approaches have primarily relied on supervised learning.Since supervised learning requires large amounts of labeled data,recent studies have explored self-supervised and semi-supervised methods to overcome this limitation.However,these approaches have largely assumed a closedset setting,where the classes present in the unlabeled data are considered identical to those in the labeled data.In contrast,this study explores an open-set semi-supervised learning setting,where the unlabeled data may contain additional,unknown classes.To address this challenge,a distance-based prototype network is employed to classify respiratory sounds in an open-set setting.In the first stage,the prototype network is trained using labeled and unlabeled data to derive prototype representations of known classes.In the second stage,distances between unlabeled data and known class prototypes are computed,and samples exceeding an adaptive threshold are identified as unknown.A new prototype is then calculated for this unknown class.In the final stage,semi-supervised learning is employed to classify labeled and unlabeled data into known and unknown classes.Compared to conventional closed-set semisupervised learning approaches,the proposed method achieved an average classification accuracy improvement of 2%–5%.Additionally,in cases of data scarcity,utilizing unlabeled data further improved classification performance by 6%–8%.The findings of this study are expected to significantly enhance respiratory sound classification performance in practical clinical settings. 展开更多
关键词 Respiratory sound classification open-set SEMI-SUPERVISED
暂未订购
A Compact Manifold Mixup Feature-Based Open-Set Recognition Approach for Unknown Signals
2
作者 Yang Ying Zhu Lidong +1 位作者 Li Chengjie Sun Hong 《China Communications》 2025年第4期322-338,共17页
There are all kinds of unknown and known signals in the actual electromagnetic environment,which hinders the development of practical cognitive radio applications.However,most existing signal recognition models are di... There are all kinds of unknown and known signals in the actual electromagnetic environment,which hinders the development of practical cognitive radio applications.However,most existing signal recognition models are difficult to discover unknown signals while recognizing known ones.In this paper,a compact manifold mixup feature-based open-set recognition approach(OR-CMMF)is proposed to address the above problem.First,the proposed approach utilizes the center loss to constrain decision boundaries so that it obtains the compact latent signal feature representations and extends the low-confidence feature space.Second,the latent signal feature representations are used to construct synthetic representations as substitutes for unknown categories of signals.Then,these constructed representations can occupy the extended low-confidence space.Finally,the proposed approach applies the distillation loss to adjust the decision boundaries between the known categories signals and the constructed unknown categories substitutes so that it accurately discovers unknown signals.The OR-CMMF approach outperformed other state-of-the-art open-set recognition methods in comprehensive recognition performance and running time,as demonstrated by simulation experiments on two public datasets RML2016.10a and ORACLE. 展开更多
关键词 manifold mixup open-set recognition synthetic representation unknown signal recognition
在线阅读 下载PDF
A new progressive open-set recognition method with adaptive probability threshold 被引量:1
3
作者 Zhunga LIU Xuemeng HUI Yimin FU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期297-310,共14页
In the traditional pattern classification method,it usually assumes that the object to be classified must lie in one of given(known)classes of the training data set.However,the training data set may not contain the cl... In the traditional pattern classification method,it usually assumes that the object to be classified must lie in one of given(known)classes of the training data set.However,the training data set may not contain the class of some objects in practice,and this is considered as an Open-Set Recognition(OSR)problem.In this paper,we propose a new progressive open-set recognition method with adaptive probability threshold.Both the labeled training data and the test data(objects to be classified)are put into a common data set,and the k-Nearest Neighbors(k-NNs)of each object are sought in this common set.Then,we can determine the probability of object lying in the given classes.If the majority of k-NNs of the object are from labeled training data,this object quite likely belongs to one of the given classes,and the density of the object and its neighbors is taken into account here.However,when most of k-NNs are from the unlabeled test data set,the class of object is considered very uncertain because the class of test data is unknown,and this object cannot be classified in this step.Once the objects belonging to known classes with high probability are all found,we re-calculate the probability of the other uncertain objects belonging to known classes based on the labeled training data and the objects marked with the estimated probability.Such iteration will stop when the probabilities of all the objects belonging to known classes are not changed.Then,a modified Otsu’s method is employed to adaptively seek the probability threshold for the final classification.If the probability of object belonging to known classes is smaller than this threshold,it will be assigned to the ignorant(unknown)class that is not included in training data set.The other objects will be committed to a specific class.The effectiveness of the proposed method has been validated using some experiments. 展开更多
关键词 Data mining k-nearest neighbors open-set recognition Object recognition The Otsu’s method
原文传递
Multi Multi-Task Learning with Dynamic Splitting for Open Open-Set Wireless Signal Recognition
4
作者 XU Yujie ZHAO Qingchen +2 位作者 XU Xiaodong QIN Xiaowei CHEN Jianqiang 《ZTE Communications》 2022年第S01期44-55,共12页
Open-set recognition(OSR)is a realistic problem in wireless signal recogni-tion,which means that during the inference phase there may appear unknown classes not seen in the training phase.The method of intra-class spl... Open-set recognition(OSR)is a realistic problem in wireless signal recogni-tion,which means that during the inference phase there may appear unknown classes not seen in the training phase.The method of intra-class splitting(ICS)that splits samples of known classes to imitate unknown classes has achieved great performance.However,this approach relies too much on the predefined splitting ratio and may face huge performance degradation in new environment.In this paper,we train a multi-task learning(MTL)net-work based on the characteristics of wireless signals to improve the performance in new scenes.Besides,we provide a dynamic method to decide the splitting ratio per class to get more precise outer samples.To be specific,we make perturbations to the sample from the center of one class toward its adversarial direction and the change point of confidence scores during this process is used as the splitting threshold.We conduct several experi-ments on one wireless signal dataset collected at 2.4 GHz ISM band by LimeSDR and one open modulation recognition dataset,and the analytical results demonstrate the effective-ness of the proposed method. 展开更多
关键词 open-set recognition dynamic method adversarial direction multi-task learn-ing wireless signal
在线阅读 下载PDF
OSCJC:An open-set compound jamming cognition method for radar systems in high-intensity electromagnetic warfare
5
作者 Kaixiang Zhang Jiaxiang Zhang +3 位作者 Xinrui Han Yilin Wang Bo Wang Quanhua Liu 《Defence Technology(防务技术)》 2026年第1期436-455,共20页
In high-intensity electromagnetic warfare,radar systems are persistently subjected to multi-jammer attacks,including potentially novel unknown jamming types that may emerge exclusively under wartime conditions.These j... In high-intensity electromagnetic warfare,radar systems are persistently subjected to multi-jammer attacks,including potentially novel unknown jamming types that may emerge exclusively under wartime conditions.These jamming signals severely degrade radar detection performance.Precise recognition of these unknown and compound jamming signals is critical to enhancing the anti-jamming capabilities and overall reliability of radar systems.To address this challenge,this article proposes a novel open-set compound jamming cognition(OSCJC)method.The proposed method employs a detection-classification dual-network architecture,which not only overcomes the false alarm and misdetection issues of traditional closed-set recognition methods when dealing with unknown jamming but also effectively addresses the performance bottleneck of existing open-set recognition techniques focusing on single jamming scenarios in compound jamming environments.To achieve unknown jamming detection,we first employ a consistency labeling strategy to train the detection network using diverse known jamming samples.This strategy enables the network to acquire highly generalizable jamming features,thereby accurately localizing candidate regions for individual jamming components within compound jamming.Subsequently,we introduce contrastive learning to optimize the classification network,significantly enhancing both intra-class clustering and inter-class separability in the jamming feature space.This method not only improves the recognition accuracy of the classification network for known jamming types but also enhances its sensitivity to unknown jamming types.Simulations and experimental data are used to verify the effectiveness of the proposed OSCJC method.Compared with the state-of-the-art open-set recognition methods,the proposed method demonstrates superior recognition accuracy and enhanced environmental adaptability. 展开更多
关键词 Radar compound jamming cognition open-set recognition Detection-classification dual-network Time-frequency analysis Contrastive learning
在线阅读 下载PDF
Characteristics of Mandarin Open-set Word Recognition Development among Chinese Children with Cochlear Implants
6
作者 Ying Kong Xin Liu +1 位作者 Sha Liu Yong-Xin Li 《Chinese Medical Journal》 SCIE CAS CSCD 2017年第20期2410-2415,共6页
Background: Cochlear implants (Cls) can improve speech recognition for children with severe congenital hearing loss, and open-set word recognition is an important efficacy measure. This study examined Mandarin open... Background: Cochlear implants (Cls) can improve speech recognition for children with severe congenital hearing loss, and open-set word recognition is an important efficacy measure. This study examined Mandarin open-set word recognition development among Chinese children with Cls and normal hearing (NH). Methods: This study included 457 children with CIs and 131 children with NH, who completed the Mandarin lexical neighborhood test. The results for children at 1-8 years alter receiving their Cls were compared to those from the children with NH using linear regression analysis and analysis of variance. Results: Recognition of disyllabic easy words, disyllabic hard words, monosyllabic easy words, and monosyllabic hard words increased with time after CI implantation. Scores for cases with implantation before 3 years old were significantly better than those for implantation after 3 years old. There were significant differences in open-set word recognition between the CI and NH groups. For implantation before 2 years, there was no significant difference in recognition at the ages of 6-7 years, compared to 3-year-old children with NH, or at the age of 10 years, compared to 6-year-old children with NH. For implantation before 3 years, there was no significant difference in recognition at the ages of 8 9 years, compared to 3-year-old children with NH, or at the age of 10 years, compared to 6-year-old children with NH. For implantation after 3 years, there was a significant difference in recognition at the age of 13 years, compared to 3-year-old children with NH. Conclusions: Mandarin open-set word recognition increased with time after CI implantation, and the age at implantation had a significant effect on long-term speech recognition. Chinese children with Cls had delayed but similar development of recognition, compared to norrnal children. Early CI implantation can shorten the gap between children with Cls and normal children. 展开更多
关键词 Children Cochlear Implantation open-set Word Recognition
原文传递
Open-Set Face Verification Algorithm Using Competitive Negative Samples
7
作者 YANG Qiong DING Xiao-qing 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2006年第1期20-25,共6页
A novel face verification algorithm using competitive negative samples is proposed.In the algorithm,the tested face matches not only with the claimed client face but also with competitive negative samples,and all the ... A novel face verification algorithm using competitive negative samples is proposed.In the algorithm,the tested face matches not only with the claimed client face but also with competitive negative samples,and all the matching scores are combined to make a final decision.Based on the algorithm,three schemes,including closestnegative-sample scheme,all-negative-sample scheme,and closest-few-negative-sample scheme,are designed.They are tested and compared with the traditional similaritybased verification approach on several databases with different features and classifiers.Experiments demonstrate that the three schemes reduce the verification error rate by 25.15%,30.24%,and 30.97%,on average,respectively. 展开更多
关键词 image recognition competitive negative samples open-set face verification
原文传递
基于机器学习的网络未知攻击检测方法研究综述 被引量:1
8
作者 陈良臣 傅德印 +3 位作者 刘宝旭 卢志刚 姜政伟 高曙 《信息安全研究》 北大核心 2025年第9期807-813,共7页
在网络安全威胁持续演变的复杂背景下,未知的网络攻击对数字基础设施的威胁与日俱增,基于机器学习的网络未知攻击检测技术成为研究重点.首先对入侵检测系统分类和网络未知攻击检测常用技术进行论述;其次从异常检测、开集识别和零样本学... 在网络安全威胁持续演变的复杂背景下,未知的网络攻击对数字基础设施的威胁与日俱增,基于机器学习的网络未知攻击检测技术成为研究重点.首先对入侵检测系统分类和网络未知攻击检测常用技术进行论述;其次从异常检测、开集识别和零样本学习3个维度对基于机器学习的网络未知攻击检测方法进行深入探讨,并进一步对常用数据集和关键评估指标进行总结;最后对未知攻击检测的发展趋势和挑战进行展望.可为进一步探索网络空间安全领域的新方法与新技术提供借鉴与参考. 展开更多
关键词 未知攻击检测 机器学习 异常检测 开集识别 零样本学习
在线阅读 下载PDF
基于特征交互与表示增强的语音手机来源开集识别方法
9
作者 岳峰 彭洋 +4 位作者 苏兆品 张国富 廉晨思 杨波 方振 《计算机应用》 北大核心 2025年第12期3813-3819,共7页
基于手机语音的多媒体取证任务一直都是研究热点,然而已有语音手机识别任务均局限于闭集模式,即训练集与测试集共享相同的类别集合,无法保证未知类别手机的识别精度,所以现有方法无法直接应用于未知手机。为此,提出一种基于特征交互与... 基于手机语音的多媒体取证任务一直都是研究热点,然而已有语音手机识别任务均局限于闭集模式,即训练集与测试集共享相同的类别集合,无法保证未知类别手机的识别精度,所以现有方法无法直接应用于未知手机。为此,提出一种基于特征交互与表示增强的语音手机来源开集识别方法(FireOSCI)。首先,设计基于多头注意力模块Fastformer的全局特征提取模块GlobalBlock,以更好地捕捉整个语音样本的全局信息,获得丰富的设备特征信息;其次,设计基于SE-Res2Block(Squeeze-Excitation Res2Block)的局部特征提取模块LocalBlocks,专注于增强跟手机信息相关的特征,抑制与手机来源识别无关的特征;随后,设计基于注意力机制的特征融合机制,将全局特征和多层局部特征深度融合;最后,设计基于注意力池化的手机来源确认网络,以提高开集模式下的识别准确率。在13个不同手机品牌、86种不同型号的手机语音数据集上的对比实验结果表明,所提方法可以实现未知类别手机的识别,为语音手机来源的开集识别提供可参考的技术方案。 展开更多
关键词 语音手机来源 开集识别 特征交互 表示增强 深度融合
在线阅读 下载PDF
结合加权对抗学习的跨域自适应融合诊断方法
10
作者 佘博 秦奋起 +2 位作者 石章松 梁伟阁 王旋 《振动工程学报》 北大核心 2025年第4期877-888,共12页
针对目标域与源域标签空间交叉的跨域诊断,即目标域和源域均存在对方领域没有的样本类型这一典型开放域诊断问题,提出一种结合加权对抗学习的跨域自适应融合诊断方法。利用熵可以表征样本已知类型和未知类型的特性,引入两个结构相同的... 针对目标域与源域标签空间交叉的跨域诊断,即目标域和源域均存在对方领域没有的样本类型这一典型开放域诊断问题,提出一种结合加权对抗学习的跨域自适应融合诊断方法。利用熵可以表征样本已知类型和未知类型的特性,引入两个结构相同的卷积神经网络进行基于熵的加权对抗性训练,以提取域不变特征增强辨识已知类型的能力,另构建源域和目标域样本输出的二元交叉方案用以隔离未知类型,此外,将两个卷积神经网络的全连接层隐藏特征作为两个标签传递模型的输入,采用投票法则融合三个诊断模型的概率输出。采用变工况的机械传动部件失效实验台数据和自吸式离心泵损伤数据进行分析验证,实验结果表明:所提跨域自适应融合诊断方法能更准确地辨识出目标域数据中已知的故障类型和未知的故障类型。 展开更多
关键词 故障诊断 开放域 跨域 对抗学习 领域自适应
在线阅读 下载PDF
结合相似度预测和阈值自动求解的开集条件下毫米波雷达点云步态识别方法
11
作者 杜兰 李逸明 +3 位作者 薛世鲲 石钰 陈健 李真芳 《电子与信息学报》 北大核心 2025年第6期1850-1863,共14页
现有的雷达步态识别方法多局限于闭集设置,即假设测试阶段的所有身份类别均已包含在模板库中,不适用于库内已知身份类别和库外未知新身份类别共存的真实开放识别环境。针对非完备身份类别模板库条件下的步态识别问题,该文提出一种结合... 现有的雷达步态识别方法多局限于闭集设置,即假设测试阶段的所有身份类别均已包含在模板库中,不适用于库内已知身份类别和库外未知新身份类别共存的真实开放识别环境。针对非完备身份类别模板库条件下的步态识别问题,该文提出一种结合相似度预测和阈值自动求解的开集条件下毫米波雷达点云步态识别方法。在点云特征提取的基础上,结合对潜在未知类相似度得分分布的先验认知,设计了一种伪开放环境训练策略来学习相似度预测网络,提升相似度得分空间中已知类别与未知类别的鉴别性;最后,阈值自动求解模块通过极值理论对相似度得分的极值分布进行概率拟合,并通过最小虚警与漏检准则实现未知类拒判阈值的准确求解。基于实测毫米波雷达点云数据的实验结果表明了所提方法在开集条件下具有良好的识别稳健性。 展开更多
关键词 毫米波雷达 步态识别 开集识别 相似度预测 极值理论
在线阅读 下载PDF
基于元增量学习的开放集识别方法
12
作者 孙晋永 王雪纯 +1 位作者 蔡国永 尚之量 《计算机科学》 北大核心 2025年第5期187-198,共12页
传统图像分类算法假定世界是静态、封闭的,而大数据时代的真实世界却是动态、开放的,新类别及其样本不断出现,导致传统图像分类算法的准确率降低。针对这种情况,研究者提出了适用于真实世界的开放集识别问题,目标是从样本集中识别出未... 传统图像分类算法假定世界是静态、封闭的,而大数据时代的真实世界却是动态、开放的,新类别及其样本不断出现,导致传统图像分类算法的准确率降低。针对这种情况,研究者提出了适用于真实世界的开放集识别问题,目标是从样本集中识别出未知类样本,同时保持对已知类样本的分类准确性。但现有的开放集识别方法都忽略了对识别出的未知类样本的进一步利用,且未知类样本通常数量较少,这些情况导致开放集识别模型无法增量地学习到已识别出的未知类样本蕴含的知识,影响了开放集识别模型的准确性和泛化性。为此,提出一种基于元增量学习的开放集识别方法,来提高开放集识别模型的准确性和泛化性。该方法使用双层优化机制构建开放集识别模型,对未知类样本进行深度聚类,使模型能够对聚类后的未知类样本进行增量学习。具体来说,首先,构建基于双层优化机制的开放集识别模型,并对其进行训练,使其具备对少量未知类样本进行增量学习的能力。然后,使用权重激励注意力机制来获取开放集识别模型参数的重要性,对模型的非关键参数进行更新,减少增量学习对模型的已知类分类能力的影响。其次,设计深度DBSCAN方法对未知类样本进行聚类,将每簇样本标记为一类,并使模型对其增量学习,丢弃离散样本,减少离散样本对增量学习效果的影响。最后,在4个公开数据集上进行实验,结果表明,相较于主流的开放集识别方法,所提方法在AUROC和F1分数上均具有更好的效果,可以充分地学习识别出的未知类样本的知识。 展开更多
关键词 开放集识别 图像分类 增量学习 元学习 聚类
在线阅读 下载PDF
基于DBO-DAOD的未知雷达调制方式识别算法
13
作者 张本辉 刘松涛 晁玉龙 《系统工程与电子技术》 北大核心 2025年第6期1833-1842,共10页
随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分... 随着各种新型雷达的出现或战时预留模式的采用,真实的战场电磁环境将越加复杂,大概率会出现种类未知且参数突变的雷达调制信号,对现有的调制方式识别算法带来严峻挑战。对此,分析雷达调制方式“未知”对识别结果的影响机理,将开集差分分布对齐(distribution alignment with open set difference,DAOD)算法引入雷达调制方式识别领域,设计具体应用的技术方案,并针对DAOD算法所需参数依靠先验知识或者试探选取问题,利用蜣螂优化(dung beetle optimizer,DBO)算法进行参数优化。仿真结果表明:在单个雷达调制方式未知情形下,精确度Accuracy和F-measure分值的平均值分别可达91.34%和95.11%;在多个雷达调制方式未知情形下,Accuracy和F-measure的平均值分别可达91.37%、93.69%;与DAOD算法相比,上述结果分别提升了3.77%、1.83%、21.17%和12.06%。因此,DBO-DAOD算法可有效提升未知雷达调制方式的识别率。 展开更多
关键词 开集差分分布对齐 蜣螂优化算法 未知调制方式识别 影响机理
在线阅读 下载PDF
Unknown DDoS Attack Detection with Sliced Iterative Normalizing Flows Technique
14
作者 Chin-Shiuh Shieh Thanh-Lam Nguyen +1 位作者 Thanh-Tuan Nguyen Mong-Fong Horng 《Computers, Materials & Continua》 2025年第3期4881-4912,共32页
DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become m... DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become more sophisticated,there is an urgent need for Intrusion Detection Systems(IDS)capable of handling these challenges effectively.Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics.This paper presents a novel approach for detecting unknown Distributed Denial of Service(DDoS)attacks by integrating Sliced Iterative Normalizing Flows(SINF)into IDS.SINF utilizes the Sliced Wasserstein distance to repeatedly modify probability distributions,enabling better management of high-dimensional data when there are only a few samples available.The unique architecture of SINF ensures efficient density estimation and robust sample generation,enabling IDS to adapt dynamically to emerging threats without relying heavily on predefined signatures or extensive retraining.By incorporating Open-Set Recognition(OSR)techniques,this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection performance.The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed system achieves an accuracy of 99.85%for known attacks and an F1 score of 99.99%after incremental learning for unknown attacks.The results clearly demonstrate the system’s strong generalization capability across unseen attacks while maintaining the computational efficiency required for real-world deployment. 展开更多
关键词 Distributed denial of service sliced iterative normalizing flows open-set recognition CYBERSECURITY deep learning
在线阅读 下载PDF
基于深度学习的雷达有源干扰开集识别和未知干扰聚类方法 被引量:4
15
作者 关中意 兰岚 +2 位作者 朱圣棋 李西敏 康梦特 《电波科学学报》 北大核心 2025年第2期261-275,共15页
针对复杂电磁环境下雷达对未知类型有源干扰识别问题,提出了一种基于深度学习的雷达有源干扰开集识别与未知干扰聚类方法。首先,通过引入残差模块、Inception模块、注意力机制模块,设计了基于多层通道注意力机制的雷达有源干扰识别网络... 针对复杂电磁环境下雷达对未知类型有源干扰识别问题,提出了一种基于深度学习的雷达有源干扰开集识别与未知干扰聚类方法。首先,通过引入残差模块、Inception模块、注意力机制模块,设计了基于多层通道注意力机制的雷达有源干扰识别网络;然后,使用干扰信号的时频图和距离-多普勒图构成两个输入分支,根据各自识别概率分布得到相对熵作为识别结果的置信度,并通过识别概率分布最大索引和相对熵的投票设置阈值,实现了对未知类型干扰的开集识别;最后,通过对深度学习网络映射得到的特征主成分进行分析,降维提取其占比超过95%的特征参数,设计了数据自适应的空间聚类算法,实现了对未知类型干扰的聚类。仿真数据将14种干扰信号划分为8种已知干扰和6种未知干扰,在干噪比大于5 dB的条件下可实现大于91.4%的有源干扰开集识别,并对未知干扰进行有效聚类。 展开更多
关键词 雷达有源干扰识别 深度学习 开集识别 干扰聚类
在线阅读 下载PDF
开源硬件:新工业革命的驱动力及未来趋势
16
作者 胡孟晗 成文静 +1 位作者 戴翔 刘一清 《华东师范大学学报(自然科学版)》 北大核心 2025年第5期162-169,共8页
面对新工业革命背景下算力复杂性上升与定制化需求加剧的挑战,开源硬件正成为打破封闭架构限制、增强技术自主可控能力的重要途径.重点关注了以RISC-Ⅴ(Reduced Instruction Set ComputerFive)为代表的开源指令集架构,系统梳理了其生态... 面对新工业革命背景下算力复杂性上升与定制化需求加剧的挑战,开源硬件正成为打破封闭架构限制、增强技术自主可控能力的重要途径.重点关注了以RISC-Ⅴ(Reduced Instruction Set ComputerFive)为代表的开源指令集架构,系统梳理了其生态优势和产业价值;同时比较了国内外主要开源项目在设计开放性、系统灵活性及协同创新机制方面的不同特点;从时间维度展开分析,可以明确开源硬件从底层架构创新逐步走向异构融合和场景拓展的发展趋势.研究表明,开源硬件在智能制造、边缘计算、沉浸式终端等关键领域有着广阔的应用前景,能够有效提升算力利用效率,降低开发难度和系统成本.开源硬件正推动芯片设计从封闭模式向共享模式转变,为工业智能化升级和技术安全战略提供新的支撑. 展开更多
关键词 开源硬件 RISC-Ⅴ指令集 异构计算架构 算力 新工业革命
在线阅读 下载PDF
基于OpenGAN的射频指纹开集识别研究 被引量:1
17
作者 高敏 陈志伟 +2 位作者 文红 侯文静 侯欣宇 《通信技术》 2025年第2期189-195,共7页
射频指纹作为设备识别的新兴手段,在设备认证等领域具有巨大潜力,但伪装设备模仿射频特征威胁网络安全,未知设备识别因此成为关键。提出了基于OpenGAN的射频指纹开集识别方法,引入重构损失与聚类损失优化生成对抗网络特征分布,提升识别... 射频指纹作为设备识别的新兴手段,在设备认证等领域具有巨大潜力,但伪装设备模仿射频特征威胁网络安全,未知设备识别因此成为关键。提出了基于OpenGAN的射频指纹开集识别方法,引入重构损失与聚类损失优化生成对抗网络特征分布,提升识别精度与鲁棒性。实验表明,OpenGAN在不同信噪比下优于传统OpenMAX方法,尤其在高开放度与低信噪比条件下表现更佳。该方法为射频指纹开集识别与无线网络安全提供了新思路和重要参考。 展开更多
关键词 射频指纹 开集识别 OpenGAN算法 重构损失 聚类损失
在线阅读 下载PDF
伪标签驱动的类内域对齐:跨域开放集故障诊断 被引量:1
18
作者 江德鸿 卢佳慧 李岩 《计算机科学与探索》 北大核心 2025年第9期2445-2457,共13页
目前,域适应故障诊断方法具有广泛的应用和发展。这些方法通常假设训练数据与测试数据共享相同的标签集。然而在实际应用中该假设往往不成立,且测试环境中可能会出现未知故障类别。为了解决这一挑战,提出了一种基于伪标签驱动的类内域... 目前,域适应故障诊断方法具有广泛的应用和发展。这些方法通常假设训练数据与测试数据共享相同的标签集。然而在实际应用中该假设往往不成立,且测试环境中可能会出现未知故障类别。为了解决这一挑战,提出了一种基于伪标签驱动的类内域对齐的跨域开放集故障诊断算法。该算法在域适应过程中利用目标域的伪标签机制,通过构建类内域对齐策略,有效缩小源域与目标域同类样本在特征空间中的分布差异,提升模型对已知类的判别能力,并通过扩展分类器的加权对抗学习来构建未知类的决策边界。为减少伪标签决策错误的影响,该方法通过伪标签的熵重新分配样本权重,从而更加准确地区分未知类与已知类。在三个轴承数据集上的实验结果表明,该方法在已知类类别和未知类类别准确率上均优于主流方法,充分验证了其有效性和先进性。 展开更多
关键词 迁移学习 域适应 开放集域适应 故障诊断
在线阅读 下载PDF
对比学习结合DenseNet的高光谱图像开放集分类
19
作者 刘城洋 赵琳 +2 位作者 于亮 吴海滨 王爱丽 《光学精密工程》 北大核心 2025年第23期3737-3753,共17页
高光谱图像分类通常假设训练与测试数据共享相同类别,且测试集中不存在未知类,但这一前提在实际环境中过于理想。针对高光谱数据类别间差异较小,特征分布容易出现重叠,从而导致边界混淆问题,提出了对比学习结合DenseNet的高光谱图像开... 高光谱图像分类通常假设训练与测试数据共享相同类别,且测试集中不存在未知类,但这一前提在实际环境中过于理想。针对高光谱数据类别间差异较小,特征分布容易出现重叠,从而导致边界混淆问题,提出了对比学习结合DenseNet的高光谱图像开放集分类方法。利用光谱特征提取模块获取原始光谱维度特征,并通过DenseNet实现多层次特征信息交互,同时利用过渡模块压缩光谱通道,以形成更清晰的类边界分布。将输出特征映射至空间特征提取模块获取空间维度特征,并借助ResNet捕获局部空间结构特征,从而增强对空间结构信息的感知。引入对比学习以提升类内聚合性和类间可分性,并结合困难样本挖掘机制对易混淆的边界特征进行优化,提升模型对边界区域样本的判别能力。最后,在Houston2013,Pavia University,WHU-Hi-LongKou数据集上的实验表明,本文方法在未知类别上获得了更高的地物分类精度,分别为68.81%,69.24%,59.26%,整体的分类精度分别为89.49%,95.06%,95.03%,实现了在保持已知类别高精度的同时,有效提升未知类别的识别能力。 展开更多
关键词 高光谱图像 开放集 DenseNet 对比学习 困难样本挖掘
在线阅读 下载PDF
开放生成与特征优化的开集识别方法
20
作者 向尔康 黄荣 董爱华 《计算机应用》 北大核心 2025年第7期2195-2202,共8页
当深度神经网络(DNN)遇到训练时未遇见的类别的样本时,不能准确地拒绝未知类样本,而开集识别能在准确分类已知类样本同时拒绝未知类样本。目前在开集识别领域,原型学习方法广为应用,然而这些方法都无法同时保证样本分布内的紧凑性和样... 当深度神经网络(DNN)遇到训练时未遇见的类别的样本时,不能准确地拒绝未知类样本,而开集识别能在准确分类已知类样本同时拒绝未知类样本。目前在开集识别领域,原型学习方法广为应用,然而这些方法都无法同时保证样本分布内的紧凑性和样本分布间的分离性。因此,提出开放生成与特征优化的开集识别方法(OGFO)。首先,提出开放点的概念,原型点通过DNN学习对应类别样本的固有特征而开放点是各类别原型点的均值。开放点代表未知类的固有特征且占据特征空间的中心区域。特征空间中心区域为未知类样本分布的开放空间;其次,提出基于开放点的特征优化算法(FOA),从而利用开放点强迫相同类别样本内部的分布更加紧凑并且迫使不同类别样本间的分布更加分离;最后,提出基于开放点的生成方法 OGAN(Open Generative Adversarial Network),并使用DNN迫使OGAN生成的未知类样本分布在开放点占据的开放空间中。实验结果表明,相较于基于对抗性反向点学习的开集识别方法(ARPL),OGFO在MNIST、SVHN、CIFAR10和TinyImageNet数据集上的AUROC(Area Under the Receiver Operating Characteristic curve)提升明显,尤其在TinyImageNet数据集上的AUROC上至少提升了3个百分点,在准确率和OSCR(Open Set Classification Rate)上分别至少提升6和5个百分点。可见,OGFO解决了其他方法无法兼顾样本分布内的紧凑性和样本分布间的分离性的问题。 展开更多
关键词 特征优化 开集识别 开放点 原型学习 深度神经网络 生成器
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部