A high-density tungsten-zirconium-titanium(W-Zr-Ti)reactive alloy was prepared by powder metallurgy.This alloy exhibits high density,high strength,and violent energy release characteristics,resulting in outstanding pe...A high-density tungsten-zirconium-titanium(W-Zr-Ti)reactive alloy was prepared by powder metallurgy.This alloy exhibits high density,high strength,and violent energy release characteristics,resulting in outstanding penetration and ignition abilities.Dynamic impact experiment demonstrated its strain rate hardening effect,and the energetic characteristics were investigated by digital image processing technique and thermal analysis experiment.The results show that W-Zr-Ti reactive alloy performs compressive strength of 2.25 GPa at 5784 s^(-1)strain rate,and its exothermic reaction occurs at about 961 K.Based on the explosion test and shock wave theory,thresholds of enhanced damage effect are less than 35.77 GPa and 5.18×10^(4)kJ/m^(2)for shock pressure and energy,respectively.Furthermore,the transformation of fracture behavior and failure mechanism is revealed,which causes the increase in compressive strength and reaction intensity under dynamic loading.展开更多
The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engin...The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.展开更多
In this study, shaking table tests were performed to investigate the dynamic characteristics of a mold transformer. Based on the test results, rotary friction dampers were developed to mitigate the excessive lateral d...In this study, shaking table tests were performed to investigate the dynamic characteristics of a mold transformer. Based on the test results, rotary friction dampers were developed to mitigate the excessive lateral displacement that occurred along the direction of the weak stiffness axis of the mold transformer. In addition, shaking table tests were performed by attaching friction dampers to both sides of the mold transformer. Based on the shaking table test results, the natural frequency, mode vector, and damping ratio of the mold transformer were derived using the transfer function and half-power bandwidth. The test results indicated that the use of friction dampers can decrease the displacement and acceleration response of the mold transformer. Finally, dynamic structural models were established considering the component connectivity and mass distribution of the mold transformer. In addition, a numerical strategy was proposed to calibrate the stiffness coefficients of the mold transformer, thereby facilitating the relationship between generalized mass and stiffness. The results indicated that the analytical model based on the calibration strategy of stiffness coefficients can reasonably simulate the dynamic behavior of the mold transformer using friction dampers with regard to transfer function, displacement, and acceleration response.展开更多
The influence of FT(freeze-thaw)cycles and average strain rate on the dynamic impact performance,energy evolution characteristics,and failure behavior of sandstone was studied through dynamic impact tests.Results disp...The influence of FT(freeze-thaw)cycles and average strain rate on the dynamic impact performance,energy evolution characteristics,and failure behavior of sandstone was studied through dynamic impact tests.Results displayed that the FT damage process of samples can be divided into three stages based on the changes in weight,porosity,and P-wave velocity.The dynamic peak strength,dynamic elastic modulus,and strength ratio decreased with increasing FT cycles,and increased with increasing average strain rate.Moreover,the average strain rate reduced the influence of FT cycles on dynamic peak strength.In general,the incident energy,reflected energy and dissipated energy increased with increasing average strain rate,the transmitted energy was negligibly affected by the average strain rate,and the energy dissipation ratio decreased with increasing average strain rate.In addition,the influence of FT cycles on each type of energy and energy dissipation ratio during sample failure was smaller than that of average strain rate.The average size of fragments can accurately demonstrate the impact of FT damage and average strain rate on dynamic peak strength and failure mode,and quantitatively evaluate the sample’s fragmentation degree.Fractal dimension varies with FT cycles and average strain rate,and the threshold is between 148.30 and 242.57 s^(-1).If the average strain rate is in the threshold range,the relationship between the fractal dimension and dynamic peak strength is more regular,otherwise,it will become complicated.The results reveal the dynamic failure mechanism of white sandstone samples,providing assistance for dynamic rock-breaking and disaster prevention in cold regions.展开更多
Transmission towers,serving as the support structure of transmission lines,are significant for the functional-ity of an electric transmission system.Bolt joint loosening is one of the critical factors that can affect ...Transmission towers,serving as the support structure of transmission lines,are significant for the functional-ity of an electric transmission system.Bolt joint loosening is one of the critical factors that can affect the safety and stability of transmission towers.In this study,the effects of bolt joint loosening on the dynamic characteristics of a 220-kV angle steel transmission tower are the main topic of concern.First,the mechanical properties of typical joints subjected to different degrees of bolt loosening are studied by finite solid-element simulation,based on which a finite hybrid-element modeling method is developed for a tower structure suffering varying loose degrees in the joints.Taking a 220-kV angle steel transmission tower as the object,the influence of the position and degree of loosening on the tower’s natural frequencies and mode shapes are simulated and discussed.The results demonstrate that the main-member splice joint and the main diagonal-horizontal member gusset plate joint account for the dominant impact on the dynamic characteristics of the tower.In addition,the dominant joint shifts from the main-member splice joint to the main diagonal-horizontal member gusset plate joint as the considered modal order increases.In the case of double joints loosening simultaneously,the loosening of nondomi-nant joints has nonnegligible effects on the tower as well.展开更多
The extreme conditions severely constrain the dynamic characteristics of aircraft landing gear retraction mechanism(ALGRM).This paper proposes a dynamic modeling and analysis method for ALGRM considering the coupling ...The extreme conditions severely constrain the dynamic characteristics of aircraft landing gear retraction mechanism(ALGRM).This paper proposes a dynamic modeling and analysis method for ALGRM considering the coupling effects of extreme conditions such as clearance joints,flexible rods,and salt spray corrosion.Firstly,the mathematical model for clearance joint and flexible rod is established and the dynamic model of ALGRM considering clearance joints and flexible rods is formulated based on Lagrangian equation.Furthermore,the salt spray corrosion model for clearance joint is developed using COMSOL simulation software.Finally,the effects of different temperatures and relative humidities on the corrosion depth of clearance joint and the dynamic characteristics of ALGRM under the coupling effects of extreme conditions are investigated.The results have found that the impact of extreme conditions on dynamics of system cannot be ignored.This study not only provides a theoretical foundation for predicting the dynamic characteristics of ALGRM under extreme conditions but also offers insights for the optimization design and corrosion protection efforts of landing gear.展开更多
The purpose of this study is to analyze the galloping characteristics of the catenary positive feeder in fluctuating wind areas considering dynamic-wind angle of attack and aerodynamic damping.Firstly,the flow field m...The purpose of this study is to analyze the galloping characteristics of the catenary positive feeder in fluctuating wind areas considering dynamic-wind angle of attack and aerodynamic damping.Firstly,the flow field model of the catenary positive feeder was established,the fluctuating wind field was simulated by Davenport wind power spectrum and linear filtering method,and the wind speed at inlet in calculation domain was controlled by editing the profile file to simulate and calculate the aerodynamic characteristics of the positive feeder in the fluctuating wind area.Then,taking the positive feeder as the research object,the mathematical model of actual structure and the corresponding finite element model were established.By applying the wind load to the finite element model,the influence of aerodynamic damping caused by the self-movement of the positive feeder on the galloping response was analyzed,and the frequency domain characteristics of galloping displacement of the positive feeder considering aerodynamic damping were studied.Finally,the calculation method of aerodynamic damping by the Guidelines for Electrical Transmission Line Structural Loading(ASCE No.74)was used for the galloping response of the positive feeder and compared with the proposed method.The results show that when considering aerodynamic damping,the galloping amplitude of the positive feeder decreases significantly,and the first-order resonance effect on the vertical displacement and horizontal displacement decreases significantly.The galloping trajectories calculated by the two methods are consistent.Therefore,this study is of great significance to further clarify the ice-free galloping mechanism of the catenary positive feeder in violent wind areas.展开更多
Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibr...Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.展开更多
Hydraulic technology has the outstanding advantages of easy pressure compensation and high power density.It is an indispensable part of subsea equipment,such as deep-sea operations and submersible propulsion.There are...Hydraulic technology has the outstanding advantages of easy pressure compensation and high power density.It is an indispensable part of subsea equipment,such as deep-sea operations and submersible propulsion.There are few studies on electrohydraulic servo valves(EHSVs)in the deep sea.In this work,a novel electro-hydraulic servo rotary valve is designed,and its mathematical model is established.The analysis considers the variations in physical parameters such as temperature,ambient pressure,and oil viscosity resulting from changes in sea depth.This study focuses on the deformation of the rotary valve and the consequent alterations in leakage and friction torque.The findings indicate that at a depth of 12000 m,the fit clearance between the valve spool and the valve sleeve is 0.00413 mm,representing a 17%reduction compared with the clearance in a land environment.Then,the response of the rotary valve to depth is analyzed.The results indicate that the bandwidth of the rotary valve decreases with increasing depth.This study provides a reference for the use of the EHSV in the deep sea.展开更多
Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a...Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures.展开更多
Double-shaft-driven needle punching machine is a specialized equipment designed for processing C/C crucible preforms.Its main needle punching module is operated by two sets of reciprocating crank-slider mechanisms.The...Double-shaft-driven needle punching machine is a specialized equipment designed for processing C/C crucible preforms.Its main needle punching module is operated by two sets of reciprocating crank-slider mechanisms.The intense vibration during needle punching not only generates huge noise,but also substantially reduces the quality of the preform.It is imperative to perform a dynamic analysis and optimization of the entire needle punching machine.In this paper,the three-dimensional(3D)model of the entire double-shaft-driven needle punching machine for C/C crucible preforms is established.Based on the modal analysis theory,the modal characteristics of the needle punching machine under various operating conditions are analyzed and its natural frequencies and vibration modes are determined.The harmonic response analysis is then employed to obtain the amplitude of the needle plate at different frequencies,and the structural weak points of the needle punching machine are identified and improved.The feasibility of the optimized scheme is subsequently reevaluated and verified.The results indicate that the first six natural frequencies of the machine increase,and the maximum amplitude of the needle plate decreases by 70.3%.The enhanced dynamic characteristics of the machine significantly improve its performance,enabling more efficient needle punching of C/C crucible preforms.展开更多
Rock-ice avalanches have frequently occurred in the Eastern Himalayan Syntaxis region due to climate change and active tectonic movements.These events commonly trigger catastrophic geohazard chains,including debris fl...Rock-ice avalanches have frequently occurred in the Eastern Himalayan Syntaxis region due to climate change and active tectonic movements.These events commonly trigger catastrophic geohazard chains,including debris flows,river blockages,and floods.This study focuses on the Zelongnong Basin,analyzing the geomorphic and dynamic characteristics of high-altitude disasters.The basin exhibits typical vertical zonation,with disaster sources initiating at elevations exceeding 4000 m and runout distances reaching up to 10 km.The disaster chain movement involves complex dynamic effects,including impact disintegration,soil-rock mixture arching,dynamic erosion,and debris deposition,enhancing understanding of the flow behavior and dynamic characteristics of rock-ice avalanches.The presence of ice significantly increases mobility due to lubrication and frictional melting.In the disaster event of September 10,2020,the maximum flow velocity and thickness reached 40 m/s and 43 m,respectively.Furthermore,continuous deformation of the Zelongnong glacier moraine was observed,with maximum cumulative deformations of 44.68 m in the distance direction and 25.96 m in the azimuth direction from March 25,2022,to August 25,2022.In the future,the risk of rock-ice avalanches in the Eastern Himalayan Syntaxis region will remain extremely high,necessitating a focus on early warning and risk mitigation strategies for such basin disasters.展开更多
The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting...The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.展开更多
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulat...Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.展开更多
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef...On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.展开更多
Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units....Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.展开更多
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node...This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.展开更多
This study considers a superconducting electrodynamic maglev train of MLX01 type.The characteristics of the electromagnetic spring coefficient of a single bogie under different magnetomotive force(MF) of the supercond...This study considers a superconducting electrodynamic maglev train of MLX01 type.The characteristics of the electromagnetic spring coefficient of a single bogie under different magnetomotive force(MF) of the superconducting coil and standard air gap(Sag) were explored.In view of the small electromagnetic damping,a passive damping control strategy and an active damping control strategy were designed to increase the electromagnetic damping force between the superconducting coil and ground coil.Combined with the coupling numerical model of a single bogie,the vibration characteristics of the bogie in different directions with different damping control strategies were studied when the Sag and MF were fixed.The results can provide important theoretical support for stable operation control of maglev trains.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
基金National Natural Science Foundation of China(12002045)Supported by State Key Laboratory of Explosion Science and Safety Protection,Beijing Institute of Technology(QNKT22-09)。
文摘A high-density tungsten-zirconium-titanium(W-Zr-Ti)reactive alloy was prepared by powder metallurgy.This alloy exhibits high density,high strength,and violent energy release characteristics,resulting in outstanding penetration and ignition abilities.Dynamic impact experiment demonstrated its strain rate hardening effect,and the energetic characteristics were investigated by digital image processing technique and thermal analysis experiment.The results show that W-Zr-Ti reactive alloy performs compressive strength of 2.25 GPa at 5784 s^(-1)strain rate,and its exothermic reaction occurs at about 961 K.Based on the explosion test and shock wave theory,thresholds of enhanced damage effect are less than 35.77 GPa and 5.18×10^(4)kJ/m^(2)for shock pressure and energy,respectively.Furthermore,the transformation of fracture behavior and failure mechanism is revealed,which causes the increase in compressive strength and reaction intensity under dynamic loading.
基金supported by the Postgraduate Education Reform and Quality Improvement Project of Henan Province,China(Grant No.YJS2023AL004)the Graduate Innovation Project of North China University of Water Resources and Electric Power(Grant No.NCWUYC-202315069)the China National Scholarship Fund organized by the China Scholarship Council(Grant No.202208410337).
文摘The deformation characteristics of silty soils under vibrational loads can easily change due to the wetting process,leading to the failure of roadbed structures.Commonly used methods for improving silty soils in engineering often yield unsatisfactory economic and ecological outcomes.As an environment-friendly soil improvement material,Xanthan gum has broad application prospects and is therefore considered a solidifying agent for enhancing silty soil properties in the Yellow River Basin.In this study,a series of tests is conducted using a scanning electron microscope and a dynamic triaxial testing apparatus to investigate the microstructure and dynamic deformation characteristics of unsaturated silty soil with varying xanthan gum contents during the wetting process.The results show that xanthan gum effectively fills voids between soil particles and adheres to their surfaces,forming fibrous and network structures.This modification enhances the inherent properties of the silty soil and significantly improves its stability under dynamic loading.Specifically,with increasing xanthan gum content,the dynamic shear modulus increases while the damping ratio decreases.During the wetting process,as suction decreases,the dynamic shear modulus decreases while the damping ratio increases.Xanthan gum reduces the sensitivity of the dynamic deformation characteristics of the treated silty soil to changes in suction levels.Finally,based on the modified Hardin-Drnevich hyperbolic model,a predictive model for the dynamic shear modulus and damping ratio of treated silty soil is proposed,considering the xanthan gum content.These research findings provide a theoretical basis for the construction and maintenance of water conservancy,slope stabilization,and roadbed projects in the Yellow River Basin.
基金Basic Science Research Program of the National Research Foundation of Korea under Grant Nos.NRF-2020R1A6A1A03044977 and NRF2022R1A2C2004351。
文摘In this study, shaking table tests were performed to investigate the dynamic characteristics of a mold transformer. Based on the test results, rotary friction dampers were developed to mitigate the excessive lateral displacement that occurred along the direction of the weak stiffness axis of the mold transformer. In addition, shaking table tests were performed by attaching friction dampers to both sides of the mold transformer. Based on the shaking table test results, the natural frequency, mode vector, and damping ratio of the mold transformer were derived using the transfer function and half-power bandwidth. The test results indicated that the use of friction dampers can decrease the displacement and acceleration response of the mold transformer. Finally, dynamic structural models were established considering the component connectivity and mass distribution of the mold transformer. In addition, a numerical strategy was proposed to calibrate the stiffness coefficients of the mold transformer, thereby facilitating the relationship between generalized mass and stiffness. The results indicated that the analytical model based on the calibration strategy of stiffness coefficients can reasonably simulate the dynamic behavior of the mold transformer using friction dampers with regard to transfer function, displacement, and acceleration response.
基金Funded by the National Natural Science Foundation of China(Nos.52174088,42277154)the Independent Innovation Research Fund Graduate Free Exploration Project for the Wuhan University of Technology(No.104972024JYS0007)。
文摘The influence of FT(freeze-thaw)cycles and average strain rate on the dynamic impact performance,energy evolution characteristics,and failure behavior of sandstone was studied through dynamic impact tests.Results displayed that the FT damage process of samples can be divided into three stages based on the changes in weight,porosity,and P-wave velocity.The dynamic peak strength,dynamic elastic modulus,and strength ratio decreased with increasing FT cycles,and increased with increasing average strain rate.Moreover,the average strain rate reduced the influence of FT cycles on dynamic peak strength.In general,the incident energy,reflected energy and dissipated energy increased with increasing average strain rate,the transmitted energy was negligibly affected by the average strain rate,and the energy dissipation ratio decreased with increasing average strain rate.In addition,the influence of FT cycles on each type of energy and energy dissipation ratio during sample failure was smaller than that of average strain rate.The average size of fragments can accurately demonstrate the impact of FT damage and average strain rate on dynamic peak strength and failure mode,and quantitatively evaluate the sample’s fragmentation degree.Fractal dimension varies with FT cycles and average strain rate,and the threshold is between 148.30 and 242.57 s^(-1).If the average strain rate is in the threshold range,the relationship between the fractal dimension and dynamic peak strength is more regular,otherwise,it will become complicated.The results reveal the dynamic failure mechanism of white sandstone samples,providing assistance for dynamic rock-breaking and disaster prevention in cold regions.
基金The Youth Foundation Project of Jiangsu Province(No.BK20230337)the Natural Science Research of Jiangsu Higher Education Institutions of China(No.22KJB560004)the National Natu-ral Science Foundation of China(No.52278523)。
文摘Transmission towers,serving as the support structure of transmission lines,are significant for the functional-ity of an electric transmission system.Bolt joint loosening is one of the critical factors that can affect the safety and stability of transmission towers.In this study,the effects of bolt joint loosening on the dynamic characteristics of a 220-kV angle steel transmission tower are the main topic of concern.First,the mechanical properties of typical joints subjected to different degrees of bolt loosening are studied by finite solid-element simulation,based on which a finite hybrid-element modeling method is developed for a tower structure suffering varying loose degrees in the joints.Taking a 220-kV angle steel transmission tower as the object,the influence of the position and degree of loosening on the tower’s natural frequencies and mode shapes are simulated and discussed.The results demonstrate that the main-member splice joint and the main diagonal-horizontal member gusset plate joint account for the dominant impact on the dynamic characteristics of the tower.In addition,the dominant joint shifts from the main-member splice joint to the main diagonal-horizontal member gusset plate joint as the considered modal order increases.In the case of double joints loosening simultaneously,the loosening of nondomi-nant joints has nonnegligible effects on the tower as well.
基金supported by the National Natural Science Foundation of China(Grant No.51875086)Sichuan Science and Technology Program(Grant No.2023NSFSC0866).
文摘The extreme conditions severely constrain the dynamic characteristics of aircraft landing gear retraction mechanism(ALGRM).This paper proposes a dynamic modeling and analysis method for ALGRM considering the coupling effects of extreme conditions such as clearance joints,flexible rods,and salt spray corrosion.Firstly,the mathematical model for clearance joint and flexible rod is established and the dynamic model of ALGRM considering clearance joints and flexible rods is formulated based on Lagrangian equation.Furthermore,the salt spray corrosion model for clearance joint is developed using COMSOL simulation software.Finally,the effects of different temperatures and relative humidities on the corrosion depth of clearance joint and the dynamic characteristics of ALGRM under the coupling effects of extreme conditions are investigated.The results have found that the impact of extreme conditions on dynamics of system cannot be ignored.This study not only provides a theoretical foundation for predicting the dynamic characteristics of ALGRM under extreme conditions but also offers insights for the optimization design and corrosion protection efforts of landing gear.
基金supported by National Natural Science Foundation of China (No.51867013)Natural Science Foundation of Gansu Province (No.20JR5RA414)。
文摘The purpose of this study is to analyze the galloping characteristics of the catenary positive feeder in fluctuating wind areas considering dynamic-wind angle of attack and aerodynamic damping.Firstly,the flow field model of the catenary positive feeder was established,the fluctuating wind field was simulated by Davenport wind power spectrum and linear filtering method,and the wind speed at inlet in calculation domain was controlled by editing the profile file to simulate and calculate the aerodynamic characteristics of the positive feeder in the fluctuating wind area.Then,taking the positive feeder as the research object,the mathematical model of actual structure and the corresponding finite element model were established.By applying the wind load to the finite element model,the influence of aerodynamic damping caused by the self-movement of the positive feeder on the galloping response was analyzed,and the frequency domain characteristics of galloping displacement of the positive feeder considering aerodynamic damping were studied.Finally,the calculation method of aerodynamic damping by the Guidelines for Electrical Transmission Line Structural Loading(ASCE No.74)was used for the galloping response of the positive feeder and compared with the proposed method.The results show that when considering aerodynamic damping,the galloping amplitude of the positive feeder decreases significantly,and the first-order resonance effect on the vertical displacement and horizontal displacement decreases significantly.The galloping trajectories calculated by the two methods are consistent.Therefore,this study is of great significance to further clarify the ice-free galloping mechanism of the catenary positive feeder in violent wind areas.
基金The Research Project of Southwest Municipal Design&Research Institute of China under Grant No.2023KY-KT-02-I。
文摘Aerodynamic and dynamic interference from trains is a key issue of concern for the safety of road vehicles travelling on single-level rail-cum road bridges.Based on the wind-road vehicle-train-bridge(WRTB)coupled vibration system developed herein,this study examines the dynamic characteristics when road vehicles meet trains in this situation.The influence of load combination,vehicle type and vehicle location is analyzed.A method to obtain the aerodynamic load of road vehicles encountering the train at an arbitrary wind speed is proposed.The results show that due to the windproof facilities and the large line distance between the railway and highway,the aerodynamic and dynamic influence of trains on road vehicles is slight,and the vibration of road vehicles depends on the road roughness.Among the road vehicles discussed,the bus is the easiest to rollover,and the truck-trailer is the easiest to sideslip.Compared with the aerodynamic impact of trains,the crosswind has a more significant influence on road vehicles.The first peak/valley value of aerodynamic loads determines the maximum dynamic response,and the quick method is optimized based on this conclusion.Test cases show that the optimized method can produce conservative results and can be used for relevant research or engineering applications.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC2805703)the Major Training Program of University Research and Innovation Platform of Gansu Provincial Department of Education(Grant No.2024CXPT-09).
文摘Hydraulic technology has the outstanding advantages of easy pressure compensation and high power density.It is an indispensable part of subsea equipment,such as deep-sea operations and submersible propulsion.There are few studies on electrohydraulic servo valves(EHSVs)in the deep sea.In this work,a novel electro-hydraulic servo rotary valve is designed,and its mathematical model is established.The analysis considers the variations in physical parameters such as temperature,ambient pressure,and oil viscosity resulting from changes in sea depth.This study focuses on the deformation of the rotary valve and the consequent alterations in leakage and friction torque.The findings indicate that at a depth of 12000 m,the fit clearance between the valve spool and the valve sleeve is 0.00413 mm,representing a 17%reduction compared with the clearance in a land environment.Then,the response of the rotary valve to depth is analyzed.The results indicate that the bandwidth of the rotary valve decreases with increasing depth.This study provides a reference for the use of the EHSV in the deep sea.
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘Addressing the current challenges in transforming pixel displacement into physical displacement in visual monitoring technologies,as well as the inability to achieve precise full-field monitoring,this paper proposes a method for identifying the structural dynamic characteristics of wind turbines based on visual monitoring data fusion.Firstly,the Lucas-Kanade Tomasi(LKT)optical flow method and a multi-region of interest(ROI)monitoring structure are employed to track pixel displacements,which are subsequently subjected to band pass filtering and resampling operations.Secondly,the actual displacement time history is derived through double integration of the acquired acceleration data and subsequent band pass filtering.The scale factor is obtained by applying the least squares method to compare the visual displacement with the displacement derived from double integration of the acceleration data.Based on this,the multi-point displacement time histories under physical coordinates are obtained using the vision data and the scale factor.Subsequently,when visual monitoring of displacements becomes impossible due to issues such as image blurring or lens occlusion,the structural vibration equation and boundary condition constraints,among other key parameters,are employed to predict the displacements at unknown monitoring points,thereby enabling full-field displacement monitoring and dynamic characteristic testing of the structure.Finally,a small-scale shaking table test was conducted on a simulated wind turbine structure undergoing shutdown to validate the dynamic characteristics of the proposed method through test verification.The research results indicate that the proposed method achieves a time-domain error within the submillimeter range and a frequency-domain accuracy of over 99%,effectively monitoring the full-field structural dynamic characteristics of wind turbines and providing a basis for the condition assessment of wind turbine structures.
基金Open Project of Shanghai Key Laboratory of Lightweight Composite,China(No.2232021A4-04)。
文摘Double-shaft-driven needle punching machine is a specialized equipment designed for processing C/C crucible preforms.Its main needle punching module is operated by two sets of reciprocating crank-slider mechanisms.The intense vibration during needle punching not only generates huge noise,but also substantially reduces the quality of the preform.It is imperative to perform a dynamic analysis and optimization of the entire needle punching machine.In this paper,the three-dimensional(3D)model of the entire double-shaft-driven needle punching machine for C/C crucible preforms is established.Based on the modal analysis theory,the modal characteristics of the needle punching machine under various operating conditions are analyzed and its natural frequencies and vibration modes are determined.The harmonic response analysis is then employed to obtain the amplitude of the needle plate at different frequencies,and the structural weak points of the needle punching machine are identified and improved.The feasibility of the optimized scheme is subsequently reevaluated and verified.The results indicate that the first six natural frequencies of the machine increase,and the maximum amplitude of the needle plate decreases by 70.3%.The enhanced dynamic characteristics of the machine significantly improve its performance,enabling more efficient needle punching of C/C crucible preforms.
基金granted by the National Natural Science Foundation of China(Grant Nos.U2244227 and U2244226)the National Key R&D Program of China(Grant No.2022YFC3004301)China Geological Survey Project(Grant No.DD20230538)。
文摘Rock-ice avalanches have frequently occurred in the Eastern Himalayan Syntaxis region due to climate change and active tectonic movements.These events commonly trigger catastrophic geohazard chains,including debris flows,river blockages,and floods.This study focuses on the Zelongnong Basin,analyzing the geomorphic and dynamic characteristics of high-altitude disasters.The basin exhibits typical vertical zonation,with disaster sources initiating at elevations exceeding 4000 m and runout distances reaching up to 10 km.The disaster chain movement involves complex dynamic effects,including impact disintegration,soil-rock mixture arching,dynamic erosion,and debris deposition,enhancing understanding of the flow behavior and dynamic characteristics of rock-ice avalanches.The presence of ice significantly increases mobility due to lubrication and frictional melting.In the disaster event of September 10,2020,the maximum flow velocity and thickness reached 40 m/s and 43 m,respectively.Furthermore,continuous deformation of the Zelongnong glacier moraine was observed,with maximum cumulative deformations of 44.68 m in the distance direction and 25.96 m in the azimuth direction from March 25,2022,to August 25,2022.In the future,the risk of rock-ice avalanches in the Eastern Himalayan Syntaxis region will remain extremely high,necessitating a focus on early warning and risk mitigation strategies for such basin disasters.
基金the continued support of Key Laboratory of Inlet and Exhaust system Technology (Nanjing University of Aeronautics and Astronautics), ChinaMinistry of Education, National Science and Technology Major Project of China (Nos. 2017-V-0004-0054, 2019-II-0007-0027, Y2022II-0005-0008)+6 种基金Defense Industrial Technology Development Program of China (No. JCKY2019605D001)Advanced Jet Propulsion Creativity Center of AEAC of China (No. HKCX2020-02-011)China Postdoctoral Science Foundation (No. 2022M721598)Jiangsu Funding Program for Excellent Postdoctoral Talent of China (No. 2022ZB214)the Youth Fund Project of Natural Science Foundation of Jiangsu Province of China (No. BK20230891)the National Natural Science Foundation of China (No. 12332018)Science Center for Gas Turbine Project, China (P2022-B-I-006-001) and some other related foundations
文摘The Bypass Dual Throat Nozzle(BDTN)is a novel fluidic Thrust Vectoring(TV)nozzle,it switches to TV state by opening the valve in the bypass.To greatly manipulate the BDTN,the dynamic characteristics in the TV starting process should be analyzed.This paper conducts numerical simulations to grasp the variation processes of performances and the flow field evolution of BDTN and Dual Throat Nozzle(DTN).The dynamic responses of TV starting in typical DTN models are investigated at first.Then,the TV starting processes of BDTN in different Nozzle Pressure Ratio(NPR)conditions are simulated,and the valve opening durations(T)are also considered.Before the expected TV direction is achieved in the DTN,the jet is deflected to the opposite direction at the beginning of the dynamic process,which is called the reverse TV phenomenon.However,this phenomenon disappears in the BDTN.The larger injection width of DTN intensifies unsteady oscillations,and the reverse TV phenomenon is strengthened.In the BDTN,T determines the delay degree of performance variations compared to the static results,which is called hysteresis effect.At NPR=10,the hysteresis affects the final stable performance of BDTN.This study analyses the dynamic characteristics in DTN and BDTN,laying a foundation for further design of nozzles and control strategies.
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
基金the National Natural Science Foundation of China(No.51779143)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2020ZD101)the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(No.19X100040072)。
文摘Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.
基金supported by the National Natural Science Foundation of China(No.32002442)the National Key R&D Program(No.2019YFD0902101).
文摘On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.
基金the support of the National Natural Science Foundation of China(52372368)。
文摘Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.
基金Anhui Provincial Natural Science Foundation(2308085QD124)Anhui Province University Natural Science Research Project(GrantNo.2023AH050918)The University Outstanding Youth Talent Support Program of Anhui Province.
文摘This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.
文摘This study considers a superconducting electrodynamic maglev train of MLX01 type.The characteristics of the electromagnetic spring coefficient of a single bogie under different magnetomotive force(MF) of the superconducting coil and standard air gap(Sag) were explored.In view of the small electromagnetic damping,a passive damping control strategy and an active damping control strategy were designed to increase the electromagnetic damping force between the superconducting coil and ground coil.Combined with the coupling numerical model of a single bogie,the vibration characteristics of the bogie in different directions with different damping control strategies were studied when the Sag and MF were fixed.The results can provide important theoretical support for stable operation control of maglev trains.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.