This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method...This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.展开更多
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl...In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios.展开更多
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at...The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.展开更多
Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe...Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons.展开更多
Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed ...Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency.展开更多
This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
Studies show that Graph Neural Networks(GNNs)are susceptible to minor perturbations.Therefore,analyzing adversarial attacks on GNNs is crucial in current research.Previous studies used Generative Adversarial Networks ...Studies show that Graph Neural Networks(GNNs)are susceptible to minor perturbations.Therefore,analyzing adversarial attacks on GNNs is crucial in current research.Previous studies used Generative Adversarial Networks to generate a set of fake nodes,injecting them into a clean GNNs to poison the graph structure and evaluate the robustness of GNNs.In the attack process,the computation of new node connections and the attack loss are independent,which affects the attack on the GNN.To improve this,a Fake Node Camouflage Attack based on Mutual Information(FNCAMI)algorithm is proposed.By incorporating Mutual Information(MI)loss,the distribution of nodes injected into the GNNs become more similar to the original nodes,achieving better attack results.Since the loss ratios of GNNs and MI affect performance,we also design an adaptive weighting method.By adjusting the loss weights in real-time through rate changes,larger loss values are obtained,eliminating local optima.The feasibility,effectiveness,and stealthiness of this algorithm are validated on four real datasets.Additionally,we use both global and targeted attacks to test the algorithm’s performance.Comparisons with baseline attack algorithms and ablation experiments demonstrate the efficiency of the FNCAMI algorithm.展开更多
3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safe...3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images.展开更多
This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-tri...This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-triggered mechanism(MBAETM)is designed based on sequential growth rates,focusing on event-triggered conditions and thresholds.Subsequently,from the perspective of defenders,non-periodic DoS attacks are re-characterized,and a model of irregular DoS attacks with cyclic fluctuations within time series is further introduced to enhance the system's defense capabilities more effectively.Additionally,considering the unified demands of network security and communication efficiency,a resilient memory-based adaptive event-triggered mechanism(RMBAETM)is proposed.A unified Lyapunov-Krasovskii functional is then constructed,incorporating a loop functional to thoroughly consider information at trigger moments.The master-slave system achieves synchronization through the application of linear matrix inequality techniques.Finally,the proposed methods'effectiveness and superiority are confirmed through four numerical simulation examples.展开更多
The rapid growth of Internet of things devices and the emergence of rapidly evolving network threats have made traditional security assessment methods inadequate.Federated learning offers a promising solution to exped...The rapid growth of Internet of things devices and the emergence of rapidly evolving network threats have made traditional security assessment methods inadequate.Federated learning offers a promising solution to expedite the training of security assessment models.However,ensuring the trustworthiness and robustness of federated learning under multi-party collaboration scenarios remains a challenge.To address these issues,this study proposes a shard aggregation network structure and a malicious node detection mechanism,along with improvements to the federated learning training process.First,we extract the data features of the participants by using spectral clustering methods combined with a Gaussian kernel function.Then,we introduce a multi-objective decision-making approach that combines data distribution consistency,consensus communication overhead,and consensus result reliability in order to determine the final network sharing scheme.Finally,by integrating the federated learning aggregation process with the malicious node detection mechanism,we improve the traditional decentralized learning process.Our proposed ShardFed algorithm outperforms conventional classification algorithms and state-of-the-art machine learning methods like FedProx and FedCurv in convergence speed,robustness against data interference,and adaptability across multiple scenarios.Experimental results demonstrate that the proposed approach improves model accuracy by up to 2.33%under non-independent and identically distributed data conditions,maintains higher performance with malicious nodes containing poisoned data ratios of 20%–50%,and significantly enhances model resistance to low-quality data.展开更多
Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory ...Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory tracking control of the manipulator.This paper proposes the radial basis function neural network adaptive hierarchical sliding mode control(RBFNNA-HSMC)method,which combines the dynamic model of the elastic tendon-driven manipulator(ETDM)with radial basis neural network adaptive control and hierarchical sliding mode control technology.The aim is to achieve trajectory tracking control of ETDM even under conditions of model inaccuracy and disturbance.The Lyapunov stability theory demonstrates the stability of the proposed RBFNNA-HSM controller.In order to assess the effectiveness and adaptability of the proposed control method,simulations and experiments were performed on a two-DOF ETDM.The RBFNNA-HSM method shows superior tracking accuracy compared to traditional modelbased HSM control.The experiment shows that the maximum tracking error for ETDM double-joint trajectory tracking is below 2.593×10-3rad and 1.624×10-3rad,respectively.展开更多
Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitor...Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.展开更多
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh...Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.展开更多
This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of pr...This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.展开更多
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co...This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.展开更多
Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the los...Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the loss function.The performance of PINNs is generally affected by both training and sampling.Specifically,training methods focus on how to overcome the training difficulties caused by the special PDE residual loss of PINNs,and sampling methods are concerned with the location and distribution of the sampling points upon which evaluations of PDE residual loss are accomplished.However,a common problem among these original PINNs is that they omit special temporal information utilization during the training or sampling stages when dealing with an important PDE category,namely,time-dependent PDEs,where temporal information plays a key role in the algorithms used.There is one method,called Causal PINN,that considers temporal causality at the training level but not special temporal utilization at the sampling level.Incorporating temporal knowledge into sampling remains to be studied.To fill this gap,we propose a novel temporal causality-based adaptive sampling method that dynamically determines the sampling ratio according to both PDE residual and temporal causality.By designing a sampling ratio determined by both residual loss and temporal causality to control the number and location of sampled points in each temporal sub-domain,we provide a practical solution by incorporating temporal information into sampling.Numerical experiments of several nonlinear time-dependent PDEs,including the Cahn–Hilliard,Korteweg–de Vries,Allen–Cahn and wave equations,show that our proposed sampling method can improve the performance.We demonstrate that using such a relatively simple sampling method can improve prediction performance by up to two orders of magnitude compared with the results from other methods,especially when points are limited.展开更多
Regulation plays a pivotal role in mitigating the spread of rumors, serving as a vital tool for maintaining social stability and facilitating its evolution. A central challenge lies in establishing an effective regula...Regulation plays a pivotal role in mitigating the spread of rumors, serving as a vital tool for maintaining social stability and facilitating its evolution. A central challenge lies in establishing an effective regulatory framework despite limited resources available for combating rumor propagation. To address this challenge, this paper proposes a dynamic and adaptive regulatory system. First, based on observed regulatory patterns in real-world social networks, the rumor propagation process is divided into two distinct phases: regulation and intervention. Regulatory intensity is introduced as an indicator of user state transitions. Unlike traditional, non-adaptive regulatory models that allocate costs uniformly,the adaptive model facilitates flexible cost distribution through a manageable individual regulatory intensity. Moreover,by introducing adaptive strength, the two cost allocation models are integrated within a unified framework, leading to the development of a dynamic model for rumor suppression. Finally, simulation experiments on Barabási–Albert(BA)networks demonstrate that the adaptive regulatory mechanism significantly reduces both the scope and duration of rumor propagation. Furthermore, when traditional non-adaptive regulatory models show limited effectiveness, the adaptive model effectively curbs rumor propagation by optimizing cost allocation between regulatory and intervention processes, and by adjusting per-unit cost benefit differentials.展开更多
Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast res...Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast results.The uncertainty in ocean-mixing parameterization is primarily responsible for the bias in ocean models.Benefiting from deep-learning technology,we design the Adaptive Fully Connected Module with an Inception module as the baseline to minimize bias.It adaptively extracts the best features through fully connected layers with different widths,and better learns the nonlinear relationship between input variables and parameterization fields.Moreover,to obtain more accurate results,we impose KPP(K-Profile Parameterization)and PP(Pacanowski–Philander)schemes as physical constraints to make the network parameterization process follow the basic physical laws more closely.Since model data are calculated with human experience,lacking some unknown physical processes,which may differ from the actual data,we use a decade-long time record of hydrological and turbulence observations in the tropical Pacific Ocean as training data.Combining physical constraints and a nonlinear activation function,our method catches its nonlinear change and better adapts to the oceanmixing parameterization process.The use of physical constraints can improve the final results.展开更多
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta...This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.展开更多
基金The National Natural Science Foundation of China(W2431048)The Science and Technology Research Program of Chongqing Municipal Education Commission,China(KJZDK202300807)The Chongqing Natural Science Foundation,China(CSTB2024NSCQQCXMX0052).
文摘This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system.
文摘In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios.
基金Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2025R319)Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publication.Special acknowledgement to Automated Systems&Soft Computing Lab(ASSCL),Prince Sultan University,Riyadh,Saudi Arabia.
文摘The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.
基金funded by the King Salman Center For Disability Research,through Research Group No.KSRG-2024-468。
文摘Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons.
基金supported by the National Natural Science Foundation of China under Grant U21A20449in part by Jiangsu Provincial Key Research and Development Program under Grant BE2021013-2。
文摘Wireless communication-enabled Cooperative Adaptive Cruise Control(CACC)is expected to improve the safety and traffic capacity of vehicle platoons.Existing CACC considers a conventional communication delay with fixed Vehicular Communication Network(VCN)topologies.However,when the network is under attack,the communication delay may be much higher,and the stability of the system may not be guaranteed.This paper proposes a novel communication Delay Aware CACC with Dynamic Network Topologies(DADNT).The main idea is that for various communication delays,in order to maximize the traffic capacity while guaranteeing stability and minimizing the following error,the CACC should dynamically adjust the VCN network topology to achieve the minimum inter-vehicle spacing.To this end,a multi-objective optimization problem is formulated,and a 3-step Divide-And-Conquer sub-optimal solution(3DAC)is proposed.Simulation results show that with 3DAC,the proposed DADNT with CACC can reduce the inter-vehicle spacing by 5%,10%,and 14%,respectively,compared with the traditional CACC with fixed one-vehicle,two-vehicle,and three-vehicle look-ahead network topologies,thereby improving the traffic efficiency.
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2022JM-381,2017JQ6070)National Natural Science Foundation of China(Grant No.61703256),Foundation of State Key Laboratory of Public Big Data(No.PBD2022-08)the Fundamental Research Funds for the Central Universities,China(Program No.GK202201014,GK202202003,GK201803020).
文摘Studies show that Graph Neural Networks(GNNs)are susceptible to minor perturbations.Therefore,analyzing adversarial attacks on GNNs is crucial in current research.Previous studies used Generative Adversarial Networks to generate a set of fake nodes,injecting them into a clean GNNs to poison the graph structure and evaluate the robustness of GNNs.In the attack process,the computation of new node connections and the attack loss are independent,which affects the attack on the GNN.To improve this,a Fake Node Camouflage Attack based on Mutual Information(FNCAMI)algorithm is proposed.By incorporating Mutual Information(MI)loss,the distribution of nodes injected into the GNNs become more similar to the original nodes,achieving better attack results.Since the loss ratios of GNNs and MI affect performance,we also design an adaptive weighting method.By adjusting the loss weights in real-time through rate changes,larger loss values are obtained,eliminating local optima.The feasibility,effectiveness,and stealthiness of this algorithm are validated on four real datasets.Additionally,we use both global and targeted attacks to test the algorithm’s performance.Comparisons with baseline attack algorithms and ablation experiments demonstrate the efficiency of the FNCAMI algorithm.
基金Supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images.
文摘This paper explores the issue of secure synchronization control in piecewise-homogeneous Markovian jump delay neural networks affected by denial-of-service(DoS)attacks.Initially,a novel memory-based adaptive event-triggered mechanism(MBAETM)is designed based on sequential growth rates,focusing on event-triggered conditions and thresholds.Subsequently,from the perspective of defenders,non-periodic DoS attacks are re-characterized,and a model of irregular DoS attacks with cyclic fluctuations within time series is further introduced to enhance the system's defense capabilities more effectively.Additionally,considering the unified demands of network security and communication efficiency,a resilient memory-based adaptive event-triggered mechanism(RMBAETM)is proposed.A unified Lyapunov-Krasovskii functional is then constructed,incorporating a loop functional to thoroughly consider information at trigger moments.The master-slave system achieves synchronization through the application of linear matrix inequality techniques.Finally,the proposed methods'effectiveness and superiority are confirmed through four numerical simulation examples.
基金supported by State Grid Hebei Electric Power Co.,Ltd.Science and Technology Project,Research on Security Protection of Power Services Carried by 4G/5G Networks(Grant No.KJ2024-127).
文摘The rapid growth of Internet of things devices and the emergence of rapidly evolving network threats have made traditional security assessment methods inadequate.Federated learning offers a promising solution to expedite the training of security assessment models.However,ensuring the trustworthiness and robustness of federated learning under multi-party collaboration scenarios remains a challenge.To address these issues,this study proposes a shard aggregation network structure and a malicious node detection mechanism,along with improvements to the federated learning training process.First,we extract the data features of the participants by using spectral clustering methods combined with a Gaussian kernel function.Then,we introduce a multi-objective decision-making approach that combines data distribution consistency,consensus communication overhead,and consensus result reliability in order to determine the final network sharing scheme.Finally,by integrating the federated learning aggregation process with the malicious node detection mechanism,we improve the traditional decentralized learning process.Our proposed ShardFed algorithm outperforms conventional classification algorithms and state-of-the-art machine learning methods like FedProx and FedCurv in convergence speed,robustness against data interference,and adaptability across multiple scenarios.Experimental results demonstrate that the proposed approach improves model accuracy by up to 2.33%under non-independent and identically distributed data conditions,maintains higher performance with malicious nodes containing poisoned data ratios of 20%–50%,and significantly enhances model resistance to low-quality data.
基金Supported by Key R&D Project of Zhejiang(Grant No.2022C02052)。
文摘Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory tracking control of the manipulator.This paper proposes the radial basis function neural network adaptive hierarchical sliding mode control(RBFNNA-HSMC)method,which combines the dynamic model of the elastic tendon-driven manipulator(ETDM)with radial basis neural network adaptive control and hierarchical sliding mode control technology.The aim is to achieve trajectory tracking control of ETDM even under conditions of model inaccuracy and disturbance.The Lyapunov stability theory demonstrates the stability of the proposed RBFNNA-HSM controller.In order to assess the effectiveness and adaptability of the proposed control method,simulations and experiments were performed on a two-DOF ETDM.The RBFNNA-HSM method shows superior tracking accuracy compared to traditional modelbased HSM control.The experiment shows that the maximum tracking error for ETDM double-joint trajectory tracking is below 2.593×10-3rad and 1.624×10-3rad,respectively.
文摘Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.
文摘Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
基金supported by the National Natural Science Foundation of China (Nos. 52233014, U2241215)。
文摘This paper develops a novel Neural Network(NN)-based adaptive nonsingular practical predefined-time controller for the hypersonic morphing aircraft subject to actuator faults. Firstly, a novel Lyapunov criterion of practical predefined-time stability is established. Following the proposed criterion, a tangent function based nonsingular predefined-time sliding manifold and the control strategy are developed. Secondly, the radial basis function NN with a low-complexity adaptation mechanism is incorporated into the controller to tackle the actuator faults and uncertainties. Thirdly, rigorous theoretical proof reveals that the attitude tracking errors can converge to a small region around the origin within a predefined time, while all signals in the closed-loop system remain bounded. Finally, numerical simulation results are presented to verify the effectiveness and improved performance of the proposed control scheme.
基金supported in part by the National Natural Science Foundation of China (62173182,61773212)the Intergovernmental International Science and Technology Innovation Cooperation Key Project of Chinese National Key R&D Program (2021YFE0102700)。
文摘This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method.
基金Project supported by the Key National Natural Science Foundation of China(Grant No.62136005)the National Natural Science Foundation of China(Grant Nos.61922087,61906201,and 62006238)。
文摘Physics-informed neural networks(PINNs)have become an attractive machine learning framework for obtaining solutions to partial differential equations(PDEs).PINNs embed initial,boundary,and PDE constraints into the loss function.The performance of PINNs is generally affected by both training and sampling.Specifically,training methods focus on how to overcome the training difficulties caused by the special PDE residual loss of PINNs,and sampling methods are concerned with the location and distribution of the sampling points upon which evaluations of PDE residual loss are accomplished.However,a common problem among these original PINNs is that they omit special temporal information utilization during the training or sampling stages when dealing with an important PDE category,namely,time-dependent PDEs,where temporal information plays a key role in the algorithms used.There is one method,called Causal PINN,that considers temporal causality at the training level but not special temporal utilization at the sampling level.Incorporating temporal knowledge into sampling remains to be studied.To fill this gap,we propose a novel temporal causality-based adaptive sampling method that dynamically determines the sampling ratio according to both PDE residual and temporal causality.By designing a sampling ratio determined by both residual loss and temporal causality to control the number and location of sampled points in each temporal sub-domain,we provide a practical solution by incorporating temporal information into sampling.Numerical experiments of several nonlinear time-dependent PDEs,including the Cahn–Hilliard,Korteweg–de Vries,Allen–Cahn and wave equations,show that our proposed sampling method can improve the performance.We demonstrate that using such a relatively simple sampling method can improve prediction performance by up to two orders of magnitude compared with the results from other methods,especially when points are limited.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62266030 and 61863025)。
文摘Regulation plays a pivotal role in mitigating the spread of rumors, serving as a vital tool for maintaining social stability and facilitating its evolution. A central challenge lies in establishing an effective regulatory framework despite limited resources available for combating rumor propagation. To address this challenge, this paper proposes a dynamic and adaptive regulatory system. First, based on observed regulatory patterns in real-world social networks, the rumor propagation process is divided into two distinct phases: regulation and intervention. Regulatory intensity is introduced as an indicator of user state transitions. Unlike traditional, non-adaptive regulatory models that allocate costs uniformly,the adaptive model facilitates flexible cost distribution through a manageable individual regulatory intensity. Moreover,by introducing adaptive strength, the two cost allocation models are integrated within a unified framework, leading to the development of a dynamic model for rumor suppression. Finally, simulation experiments on Barabási–Albert(BA)networks demonstrate that the adaptive regulatory mechanism significantly reduces both the scope and duration of rumor propagation. Furthermore, when traditional non-adaptive regulatory models show limited effectiveness, the adaptive model effectively curbs rumor propagation by optimizing cost allocation between regulatory and intervention processes, and by adjusting per-unit cost benefit differentials.
基金supported by the National Natural Science Foundation of China(Grant Nos.42130608 and 42075142)the National Key Research and Development Program of China(Grant No.2020YFA0608000)the CUIT Science and Technology Innovation Capacity Enhancement Program Project(Grant No.KYTD202330)。
文摘Existing traditional ocean vertical-mixing schemes are empirically developed without a thorough understanding of the physical processes involved,resulting in a discrepancy between the parameterization and forecast results.The uncertainty in ocean-mixing parameterization is primarily responsible for the bias in ocean models.Benefiting from deep-learning technology,we design the Adaptive Fully Connected Module with an Inception module as the baseline to minimize bias.It adaptively extracts the best features through fully connected layers with different widths,and better learns the nonlinear relationship between input variables and parameterization fields.Moreover,to obtain more accurate results,we impose KPP(K-Profile Parameterization)and PP(Pacanowski–Philander)schemes as physical constraints to make the network parameterization process follow the basic physical laws more closely.Since model data are calculated with human experience,lacking some unknown physical processes,which may differ from the actual data,we use a decade-long time record of hydrological and turbulence observations in the tropical Pacific Ocean as training data.Combining physical constraints and a nonlinear activation function,our method catches its nonlinear change and better adapts to the oceanmixing parameterization process.The use of physical constraints can improve the final results.
基金supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA13)the Major Science and Technology Project of Gansu(No.19ZD2GA003).
文摘This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.