The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence char...The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.展开更多
For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy...For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.展开更多
Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth.Although all flow parameters change along the streamwise direction,previous studies hav...Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth.Although all flow parameters change along the streamwise direction,previous studies have revealed that these parameters’vertical distributions at different sections can be universally described with a single profile when being nondimensionalised by appropriate scales.This study focuses on the population trends of spanwise rotational motions at various sections along the main flow direction by particle imaging velocimetry(PIV)measurement.The wall-normal population distributions of density,radius,swirling strength,and convection velocity of the prograde and retrograde motions show similar trends in uniform open-channel flows.The dimensionless representation is invariant along the main flow direction.This study’s results indicate the self-similar characteristic of population trends of spanwise rotational motions prevails in decelerating open-channel flow.展开更多
Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized co...Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.展开更多
Combining flows often occur in open channel networks of drainage systems and river engineering. Open-channel junction flows were analyzed by solving the depth-averaged two-dimensional, elliptic Reynolds-averaged Navie...Combining flows often occur in open channel networks of drainage systems and river engineering. Open-channel junction flows were analyzed by solving the depth-averaged two-dimensional, elliptic Reynolds-averaged Navier-Stokes equations with the Hanjalic-Launder (H-L) modification to the k-ε turbulence model without the free surface “rigid lid” approximation with an efficient finite-volume procedure. The model can also analyze flows with separation. The model was used to analyze the relative importance of various factors and was compared with laboratory measurements. The H-L modification produced much better simulations of the separation zone size with 20% better accuracy than the standard k-ε model. The H-L modification was then used to study the characteristic of junction flows and the separation zones with different discharge ratios. The simulational results show that separation zone size decreases as the discharge ratio of the upstream main channel to the downstream channel increases.展开更多
Flows in open-channel with partial emergent rigid vegetation cover are simulated using the lattice Boltzmann method (LBM) described by the 2-D nonlinear shallow water equations. The effect of vegetation is represented...Flows in open-channel with partial emergent rigid vegetation cover are simulated using the lattice Boltzmann method (LBM) described by the 2-D nonlinear shallow water equations. The effect of vegetation is represented with the vegetation roughness coefficient, which is related to the vegetation density, diameter of the vegetation elements and drag coefficient. The model is verified by three numerical tests: flow in a 180° curved open channel with partial vegetation cover at the outer bank, flow in a rectangular channel with a finite patch of vegetation and flow in a rectangular channel with a vegetated bank. Numerical results are compared with the experimental data, and the good agreement proved that the presented model can model the vegetated channel flows correctly.展开更多
Turbulence structure in a helically coiled open channel flow is numerically simulated using three different turbulence models--the Launder and Ying model, the Naot and Rodi model, and the nonlinear k-ε Model (SY mode...Turbulence structure in a helically coiled open channel flow is numerically simulated using three different turbulence models--the Launder and Ying model, the Naot and Rodi model, and the nonlinear k-ε Model (SY model). Simulation results were compared with observation of (i) turbulent flows in alternating point-bar type channel bends with rectangular sections, and (ii) straight open channel flows with compound cross-sections. Based on calculations of the impact of various channel curvatures on turbulence characteristics, accuracy of the three turbulence models was analyzed with observed data as a qualitative reference. It has been found out that the Launder and Ying model and the nonlinear k-ε Model are able to predict the same general trend as measured data, and the simulation of the effect of the centrifugal force on the formation of secondary currents produces a correct pattern.展开更多
A high accuracy experimental system has been established for unsteady open-channel flow.Then 40 experiments were conducted to study the propagating characteristics of unsteady open-channel flow.From the experimental d...A high accuracy experimental system has been established for unsteady open-channel flow.Then 40 experiments were conducted to study the propagating characteristics of unsteady open-channel flow.From the experimental data,the variation law of propagating velocity,wave deformation rate,flow depth of wave peak and bottom,and other parameters were obtained.The experimental results show the followings.1) The propagating velocity of unsteady open-channel flows can be expressed by the sum of flow velocity and micro-amplitude wave velocity at wave peak.2) The waveform of an unsteady flow would deform when it propagates,with the rising stage becoming longer and the falling stage shorter;the deformation rate is a function of distance,period and relative amplitude of discharge.3) The flow depths of wave peak and bottom have a close relationship with the period of the unsteady flow.When the period is short,water depths of wave peak and bottom are both close to those of the average discharge in the condition of uniform flow.For a long period unsteady flow,the water depth of wave peak is close to that of the maximal discharge in the condition of uniform flow,while at the flow wave bottom,it is close to the depth of the minimum discharge in an uniform flow.4) Propagating characteristic of discharge is analogous to that of flow depth for unsteady flow.展开更多
A part of mean kinetic energy in a main-channel is used for production of a large-scale horizontal circulation in the side cavity. However, the details of the mechanism such as energy transport are poorly understood. ...A part of mean kinetic energy in a main-channel is used for production of a large-scale horizontal circulation in the side cavity. However, the details of the mechanism such as energy transport are poorly understood. Therefore, we conducted PIV mea- surements in a laboratory flume and compared space distributions of mean velocity components and Reynolds stress by varying a cavity geometry. In particular, a practical calculation method of Reynolds stress was also developed and its accuracy was examined by comparison with the measured data. Furthermore, contributions of components in an energy transport equation were revealed quantitatively.展开更多
For the 90° equal-width open-channel junction flow, the Reynolds averaged Navier-Stokes equations are solved while using the 3-D κ- ω model. The mean flow pattern and the secondary current are obtained. The mod...For the 90° equal-width open-channel junction flow, the Reynolds averaged Navier-Stokes equations are solved while using the 3-D κ- ω model. The mean flow pattern and the secondary current are obtained. The model is validated by experimental data, and then applied to investigate the effect of the discharge ratio on the shape of separation zone shape, the cross-sectional mean flow angle and the contraction coefficient. The results are fairly close to those of the prior studies. The numerical modeling is both less time-consuming and less expensive to obtain the various flow parameters needed for engineering design.展开更多
A flow in a smooth open channel can he divided into several regions along the flow direction, i. e. the laminar boundary layer, transition region, turbulent boundary layer, fully developed turbulent boundary layer and...A flow in a smooth open channel can he divided into several regions along the flow direction, i. e. the laminar boundary layer, transition region, turbulent boundary layer, fully developed turbulent boundary layer and a uniform open-channel turbulent flow. The temporal mean and turbulent characteristics will not vary again in the course of the uniform open-channel flow. There is obviously a structure of different regions in the vertical direction of a smooth open-channel turbulent flow. The limits of different regions, the velocity profiles and characteristics of fluctuating velocities in such regions are given. When the aspect ratio W/H is larger than 10, the flow in the open channel may be considered as a 2-dimensional flow. The formulas of sectional averaged velocity and frictional loss factor are also given.展开更多
Compared with traditional solid-state drives(SSDs),open-channel SSDs(OCSSDs)expose their internal physical layout and provide a host-based flash translation layer(FTL)that allows host-side software to control the inte...Compared with traditional solid-state drives(SSDs),open-channel SSDs(OCSSDs)expose their internal physical layout and provide a host-based flash translation layer(FTL)that allows host-side software to control the internal operations such as garbage collection(GC)and input/output(I/O)scheduling.In this paper,we comprehensively survey research works built on OCSSDs in recent years.We show how they leverage the features of OCSSDs to achieve high throughput,low latency,long lifetime,strong performance isolation,and high resource utilization.We categorize these efforts into five groups based on their optimization methods:adaptive interface customizing,rich FTL co-designing,internal parallelism exploiting,rational I/O scheduling,and efficient GC processing.We discuss the strengths and weaknesses of these efforts and find that almost all these efforts face a dilemma between performance effectiveness and management complexity.We hope that this survey can provide fundamental knowledge to researchers who want to enter this field and further inspire new ideas for the development of OCSSDs.展开更多
Based on the continuity equation, the distribution of vertical velocity in equilibrium steady non-uniform and unsteady open-channel flows were deduced theoretically. Then a recently developed Acoustic Doppler Velocity...Based on the continuity equation, the distribution of vertical velocity in equilibrium steady non-uniform and unsteady open-channel flows were deduced theoretically. Then a recently developed Acoustic Doppler Velocity Profiler (ADVP) at the Swiss Federal Institute of Technology was used to measure instantaneously the flow profiles. From these measurements, the vertical velocity and the other flow parameters were obtained. Additional data measured using an Acoustic Doppler Velocimeter (ADV) at the Nanyang Technological University were also presented. The agreement between the theoretical distribution of vertical velocity and the measured data is reasonably good.展开更多
In hydraulic engineering,free-surface aeration is a natural phenomenon occurring in smooth channel flows.In self-aerated flows,a key aspect that has not yet been well understood is the formation mechanism of free-surf...In hydraulic engineering,free-surface aeration is a natural phenomenon occurring in smooth channel flows.In self-aerated flows,a key aspect that has not yet been well understood is the formation mechanism of free-surface air entrainment.In this research,the process of free-surface entrapped deformation is analyzed theoretically and the critical radius of curvature for air entrainment is obtained,affected by flow mean velocity and depth.When the severity of local free-surface deformation exceeds the critical condition,the entrapped free surface encounters closure in the unstable deformation movement process,resulting in air entrainment.This inference agrees well with observed experimental results that are obtained from the processes of surface entrapped deformation and air entrainment captured by a high-speed camera-based data acquisition system.This agreement indicates that self-aeration occurs in low-velocity open-channel flows.It is also confirmed that free-surface turbulent deformation provides a mechanism for air entrainment.展开更多
Aquatic vegetation can influence the transport of sediment and contaminants by changing the mean velocity and turbulent flow structure in channels. It is important to understand the hydraulics of the flows over vegeta...Aquatic vegetation can influence the transport of sediment and contaminants by changing the mean velocity and turbulent flow structure in channels. It is important to understand the hydraulics of the flows over vegetation in order to manage fluvial processes. Experiments in an open-channel flume with natural vegetation were carried out to study the influence of vegetation on the flows. In a half channel with two different densities of vegetation, the flow velocity, Reynolds stresses, and turbulence intensities were measured using an Acoustic Doppler Velocimeter (ADV). We obtained velocity profiles in the lateral direction, Reynolds stresses in the vertical direction, and the flow transition between the vegetated and non-vegetated zones in different flow regimes. The results show that the streamwise velocity in the vegetated zone with higher density is almost entirely blocked. Reynolds stress distribution distinguishes with two different regions: inside and above the vegetation canopies. The turbulence intensities increase with increasing Reynolds number. The coherent vortices dominate the vertical transport of momentum and are advected clockwise between the vegetated zone and non-vegetated zone by secondary currents (a relatively minor flow superimposed on the primary flow, with significantly different speed and direction), generated by the anisotropy of the turbulence.展开更多
The bed of a river often features some kinds of bedform, such as sand ripples, dunes, and so on. Even if the bed is smooth initially, disturbances arising from the bed or other external sources will cause the laminar ...The bed of a river often features some kinds of bedform, such as sand ripples, dunes, and so on. Even if the bed is smooth initially, disturbances arising from the bed or other external sources will cause the laminar flow in an open channel to become unstable as soon as the flow develops, thereby leading to the formation of sand ripples on the bed. In return, the formation of the sand ripples will modfy the instability path of the laminar flow passing over them. The wavy character of the bed will induce further instability of the flow, which is essentially different from that on a smooth bed: the neutral curve will move forward and the critical Reynolds number will decrease. The flow is unstable in response to a wider range of the disturbance wave number, or the laminar flow instability can happen more easily. The propagation speed of the sand ripples also affects the flow instability, since the stability of open channel flow over a movable bed is fundamentally different from that on a rigid bed. These instability effects are discussed in detail in this paper.展开更多
This study focuses on the effects of one-line emergent natural tree(Cupressus Macrocarpa) planted at the edge of the floodplain in a compound open-channel flow. The flow velocity and water level are measured and use...This study focuses on the effects of one-line emergent natural tree(Cupressus Macrocarpa) planted at the edge of the floodplain in a compound open-channel flow. The flow velocity and water level are measured and used to analyze the flow structure. The time averaged and depth-averaged streamwise velocity distributions with root mean square(rms) and time series of streamwise velocity distrbution are analyzed. The velocity distribution considerably changes along the compound channel. The streamwise velocity distribution fits with logarithmic distribution in the non-vegetated case, but for vegetated cases, the streamwise velocity distribution shows S shaped profile at the 1/3 part of floodplain(/3)B_f and main channel(/3)B_m close to the boundary between floodplain and main channel. Additionally, it is obtained that the presence of tree line increases turbulence intensity over the compound open-channel. Moreover, an oscillation period is obtained in the flow caused by tree line by analyzing time series of the streamwise velocity distribution. The oscillation is present everywhere in the floodplain and present at almost/3 B_m part of the main channel which is close to the junction between floodplain and main channel.展开更多
文摘The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
文摘For submerged vegetated flow, the velocity profile has two distinctive distributions in the vegetation layer in the lower region and the surface layer in the upper non-vegetated region. Based on a mixing-layer analogy, different analytical models have been proposed for the velocity profile in the two layers. This paper evaluates the four analytical models of Klopstra et al., Defina & Bixio, Yang et al. and Nepf against a wide range of independent experimental data available in the literature. To test the applicability and robust of the models, the author used the 19 datasets with various relative depths of submergence, different vegetation densities and bed slopes (1.8 × 10?6 - 4.0 × 10?3). This study shows that none of the models can predict the velocity profiles well for all datasets. The three models except Yang’s model performed reasonably well in certain cases, but Yang’s model failed in most the cases studied. It was also found that the Defina model is almost the same as the Klopstra model, if the same mixing length scale of eddies (λ) is used. Finally, close examination of the mixing length scale of eddies (λ) in the Defina model showed that when λ/h = 1/40(H/h)1/2, this model can predict velocity profiles well for all the datasets used.
基金the National Natural Science Foundation of China(Grant No.51679020)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202100731).
文摘Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth.Although all flow parameters change along the streamwise direction,previous studies have revealed that these parameters’vertical distributions at different sections can be universally described with a single profile when being nondimensionalised by appropriate scales.This study focuses on the population trends of spanwise rotational motions at various sections along the main flow direction by particle imaging velocimetry(PIV)measurement.The wall-normal population distributions of density,radius,swirling strength,and convection velocity of the prograde and retrograde motions show similar trends in uniform open-channel flows.The dimensionless representation is invariant along the main flow direction.This study’s results indicate the self-similar characteristic of population trends of spanwise rotational motions prevails in decelerating open-channel flow.
文摘Confluences play a major role in the dynamics of networks of natural and man-made open channels, and field measurements on river confluences reveal that discordance in bed elevation is common.Studies of schematized confluences with a step at the interface between the tributary and the main channel bed reveal that bed elevation discordance is an important additional control for the confluence hydrodynamics.This study aimed to improve understanding of the influence of bed elevation discordance on the flow patterns and head losses in a right-angled confluence of an open channel with rectangular cross-sections.A large eddy simulation (LES)-based numerical model was set up and validated with experiments by others.Four configurations with different bed discordance ratios were investigated.The results confirm that, with increasing bed elevation discordance, the tributary streamlines at the confluence interface deviate less from the geometrical confluence angle, the extent of the recirculation zone (RZ) gets smaller, the ratio of the water depth upstream to that downstream of the confluence decreases, and the water level depression reduces.The bed elevation discordance also leads to the development of a large-scale structure in the lee of the step.Despite the appearance of the large-scale structure, the reduced extent of the RZ and associated changes in flow deflection/contraction reduce total head losses experienced by the main channel with an increase of the bed discordance ratio.It turns out that bed elevation discordance converts the lateral momentum from the tributary to streamwise momentum in the main channel more efficiently.
文摘Combining flows often occur in open channel networks of drainage systems and river engineering. Open-channel junction flows were analyzed by solving the depth-averaged two-dimensional, elliptic Reynolds-averaged Navier-Stokes equations with the Hanjalic-Launder (H-L) modification to the k-ε turbulence model without the free surface “rigid lid” approximation with an efficient finite-volume procedure. The model can also analyze flows with separation. The model was used to analyze the relative importance of various factors and was compared with laboratory measurements. The H-L modification produced much better simulations of the separation zone size with 20% better accuracy than the standard k-ε model. The H-L modification was then used to study the characteristic of junction flows and the separation zones with different discharge ratios. The simulational results show that separation zone size decreases as the discharge ratio of the upstream main channel to the downstream channel increases.
基金Project supported by the CRSRI Open Research Program (Grant No. CKWV2017501/KY)the National Nature Science Foundation of China (Grant Nos. 51679170, 51879199 and 51439007).
文摘Flows in open-channel with partial emergent rigid vegetation cover are simulated using the lattice Boltzmann method (LBM) described by the 2-D nonlinear shallow water equations. The effect of vegetation is represented with the vegetation roughness coefficient, which is related to the vegetation density, diameter of the vegetation elements and drag coefficient. The model is verified by three numerical tests: flow in a 180° curved open channel with partial vegetation cover at the outer bank, flow in a rectangular channel with a finite patch of vegetation and flow in a rectangular channel with a vegetated bank. Numerical results are compared with the experimental data, and the good agreement proved that the presented model can model the vegetated channel flows correctly.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 50179015, 59879009, 50221903)
文摘Turbulence structure in a helically coiled open channel flow is numerically simulated using three different turbulence models--the Launder and Ying model, the Naot and Rodi model, and the nonlinear k-ε Model (SY model). Simulation results were compared with observation of (i) turbulent flows in alternating point-bar type channel bends with rectangular sections, and (ii) straight open channel flows with compound cross-sections. Based on calculations of the impact of various channel curvatures on turbulence characteristics, accuracy of the three turbulence models was analyzed with observed data as a qualitative reference. It has been found out that the Launder and Ying model and the nonlinear k-ε Model are able to predict the same general trend as measured data, and the simulation of the effect of the centrifugal force on the formation of secondary currents produces a correct pattern.
基金supported by the National Key Technology R & D Programof China (Grant No. 2011BAB09B01)the Chongqing Natural Science Foundation of China (Grant No. cstc2011jjA1167)
文摘A high accuracy experimental system has been established for unsteady open-channel flow.Then 40 experiments were conducted to study the propagating characteristics of unsteady open-channel flow.From the experimental data,the variation law of propagating velocity,wave deformation rate,flow depth of wave peak and bottom,and other parameters were obtained.The experimental results show the followings.1) The propagating velocity of unsteady open-channel flows can be expressed by the sum of flow velocity and micro-amplitude wave velocity at wave peak.2) The waveform of an unsteady flow would deform when it propagates,with the rising stage becoming longer and the falling stage shorter;the deformation rate is a function of distance,period and relative amplitude of discharge.3) The flow depths of wave peak and bottom have a close relationship with the period of the unsteady flow.When the period is short,water depths of wave peak and bottom are both close to those of the average discharge in the condition of uniform flow.For a long period unsteady flow,the water depth of wave peak is close to that of the maximal discharge in the condition of uniform flow,while at the flow wave bottom,it is close to the depth of the minimum discharge in an uniform flow.4) Propagating characteristic of discharge is analogous to that of flow depth for unsteady flow.
文摘A part of mean kinetic energy in a main-channel is used for production of a large-scale horizontal circulation in the side cavity. However, the details of the mechanism such as energy transport are poorly understood. Therefore, we conducted PIV mea- surements in a laboratory flume and compared space distributions of mean velocity components and Reynolds stress by varying a cavity geometry. In particular, a practical calculation method of Reynolds stress was also developed and its accuracy was examined by comparison with the measured data. Furthermore, contributions of components in an energy transport equation were revealed quantitatively.
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2007CB714705)the National Science Foundation of Fujian Province (Grant No. E0710013)
文摘For the 90° equal-width open-channel junction flow, the Reynolds averaged Navier-Stokes equations are solved while using the 3-D κ- ω model. The mean flow pattern and the secondary current are obtained. The model is validated by experimental data, and then applied to investigate the effect of the discharge ratio on the shape of separation zone shape, the cross-sectional mean flow angle and the contraction coefficient. The results are fairly close to those of the prior studies. The numerical modeling is both less time-consuming and less expensive to obtain the various flow parameters needed for engineering design.
基金Project supported by the National Natural Science Foundation of China
文摘A flow in a smooth open channel can he divided into several regions along the flow direction, i. e. the laminar boundary layer, transition region, turbulent boundary layer, fully developed turbulent boundary layer and a uniform open-channel turbulent flow. The temporal mean and turbulent characteristics will not vary again in the course of the uniform open-channel flow. There is obviously a structure of different regions in the vertical direction of a smooth open-channel turbulent flow. The limits of different regions, the velocity profiles and characteristics of fluctuating velocities in such regions are given. When the aspect ratio W/H is larger than 10, the flow in the open channel may be considered as a 2-dimensional flow. The formulas of sectional averaged velocity and frictional loss factor are also given.
基金Project supported by the National Natural Science Foundation of China(No.62025203)。
文摘Compared with traditional solid-state drives(SSDs),open-channel SSDs(OCSSDs)expose their internal physical layout and provide a host-based flash translation layer(FTL)that allows host-side software to control the internal operations such as garbage collection(GC)and input/output(I/O)scheduling.In this paper,we comprehensively survey research works built on OCSSDs in recent years.We show how they leverage the features of OCSSDs to achieve high throughput,low latency,long lifetime,strong performance isolation,and high resource utilization.We categorize these efforts into five groups based on their optimization methods:adaptive interface customizing,rich FTL co-designing,internal parallelism exploiting,rational I/O scheduling,and efficient GC processing.We discuss the strengths and weaknesses of these efforts and find that almost all these efforts face a dilemma between performance effectiveness and management complexity.We hope that this survey can provide fundamental knowledge to researchers who want to enter this field and further inspire new ideas for the development of OCSSDs.
文摘Based on the continuity equation, the distribution of vertical velocity in equilibrium steady non-uniform and unsteady open-channel flows were deduced theoretically. Then a recently developed Acoustic Doppler Velocity Profiler (ADVP) at the Swiss Federal Institute of Technology was used to measure instantaneously the flow profiles. From these measurements, the vertical velocity and the other flow parameters were obtained. Additional data measured using an Acoustic Doppler Velocimeter (ADV) at the Nanyang Technological University were also presented. The agreement between the theoretical distribution of vertical velocity and the measured data is reasonably good.
基金supported by the National Natural Science Foundation of China (Grant No. 51379138)the National Basic Research Program of China (“973” Project) (Grant No. 2013CB035905)
文摘In hydraulic engineering,free-surface aeration is a natural phenomenon occurring in smooth channel flows.In self-aerated flows,a key aspect that has not yet been well understood is the formation mechanism of free-surface air entrainment.In this research,the process of free-surface entrapped deformation is analyzed theoretically and the critical radius of curvature for air entrainment is obtained,affected by flow mean velocity and depth.When the severity of local free-surface deformation exceeds the critical condition,the entrapped free surface encounters closure in the unstable deformation movement process,resulting in air entrainment.This inference agrees well with observed experimental results that are obtained from the processes of surface entrapped deformation and air entrainment captured by a high-speed camera-based data acquisition system.This agreement indicates that self-aeration occurs in low-velocity open-channel flows.It is also confirmed that free-surface turbulent deformation provides a mechanism for air entrainment.
基金supported by the National Basic Research Program of China (973 Program, 2008CB418203)the National Natural Science Foundation of China (Grant No. 50709009)the Elitist Support Project of Ministry of Education (Grant No. NCET-07-0254)
文摘Aquatic vegetation can influence the transport of sediment and contaminants by changing the mean velocity and turbulent flow structure in channels. It is important to understand the hydraulics of the flows over vegetation in order to manage fluvial processes. Experiments in an open-channel flume with natural vegetation were carried out to study the influence of vegetation on the flows. In a half channel with two different densities of vegetation, the flow velocity, Reynolds stresses, and turbulence intensities were measured using an Acoustic Doppler Velocimeter (ADV). We obtained velocity profiles in the lateral direction, Reynolds stresses in the vertical direction, and the flow transition between the vegetated and non-vegetated zones in different flow regimes. The results show that the streamwise velocity in the vegetated zone with higher density is almost entirely blocked. Reynolds stress distribution distinguishes with two different regions: inside and above the vegetation canopies. The turbulence intensities increase with increasing Reynolds number. The coherent vortices dominate the vertical transport of momentum and are advected clockwise between the vegetated zone and non-vegetated zone by secondary currents (a relatively minor flow superimposed on the primary flow, with significantly different speed and direction), generated by the anisotropy of the turbulence.
基金supported by the National Natural Science Foundation of China(Grant Nos.50279030,40376028).
文摘The bed of a river often features some kinds of bedform, such as sand ripples, dunes, and so on. Even if the bed is smooth initially, disturbances arising from the bed or other external sources will cause the laminar flow in an open channel to become unstable as soon as the flow develops, thereby leading to the formation of sand ripples on the bed. In return, the formation of the sand ripples will modfy the instability path of the laminar flow passing over them. The wavy character of the bed will induce further instability of the flow, which is essentially different from that on a smooth bed: the neutral curve will move forward and the critical Reynolds number will decrease. The flow is unstable in response to a wider range of the disturbance wave number, or the laminar flow instability can happen more easily. The propagation speed of the sand ripples also affects the flow instability, since the stability of open channel flow over a movable bed is fundamentally different from that on a rigid bed. These instability effects are discussed in detail in this paper.
基金the funding of the research project (MF14010) from Adnan Menderes University which allows establishing the experiment flume in the laboratory
文摘This study focuses on the effects of one-line emergent natural tree(Cupressus Macrocarpa) planted at the edge of the floodplain in a compound open-channel flow. The flow velocity and water level are measured and used to analyze the flow structure. The time averaged and depth-averaged streamwise velocity distributions with root mean square(rms) and time series of streamwise velocity distrbution are analyzed. The velocity distribution considerably changes along the compound channel. The streamwise velocity distribution fits with logarithmic distribution in the non-vegetated case, but for vegetated cases, the streamwise velocity distribution shows S shaped profile at the 1/3 part of floodplain(/3)B_f and main channel(/3)B_m close to the boundary between floodplain and main channel. Additionally, it is obtained that the presence of tree line increases turbulence intensity over the compound open-channel. Moreover, an oscillation period is obtained in the flow caused by tree line by analyzing time series of the streamwise velocity distribution. The oscillation is present everywhere in the floodplain and present at almost/3 B_m part of the main channel which is close to the junction between floodplain and main channel.