Using a homogenized daily maximum temperature(T_(max))dataset across China,this study characterized the spatiotemporal variation of the onset date of extreme hot days in a year(i.e.,FirstEHD)during 1960-2018.Inhomogen...Using a homogenized daily maximum temperature(T_(max))dataset across China,this study characterized the spatiotemporal variation of the onset date of extreme hot days in a year(i.e.,FirstEHD)during 1960-2018.Inhomogeneous trends of FirstEHD over China during 1960-2018 can be found,with the advanced trend of FirstEHD over most parts in China,while a number of stations in North-Central China(NC)show the delayed trend of FirstEHD.Moreover,there exist interdecadal changes of FirstEHD trend,with a remarkable difference in the trend magnitude before and after the 1990s over South China(SC),and the sign of trend can even reverse from negative to positive after the 1990s in Xinjiang(XJ)and Yangtze River Basin(YR),and from positive to negative in NC.The overall trends of FirstEHD over NC,YR,and XJ during 1960-2018 are dominated by the trends before the 1990s,while they are dominated by the sharp advance after the 1990s over SC.It is further found that the trend of FirstEHD can generally be explained by the long-term trend in T_(max) over most parts of China,but the contribution from T_(max) variabilities is also non-negligible and can even account for more than 75% of the overall trend over NC.The possible factors responsible for the decadal changes in FirstEHD trends are also discussed.展开更多
The melt onset dates(MOD)over Arctic sea ice plays an important role in the seasonal cycle of sea ice surface properties,which impacts Arctic surface solar radiation absorbed by the ice-ocean system.Monitoring interan...The melt onset dates(MOD)over Arctic sea ice plays an important role in the seasonal cycle of sea ice surface properties,which impacts Arctic surface solar radiation absorbed by the ice-ocean system.Monitoring interannual variations in MOD is valuable for understanding climate change.In this study,we investigated the spatio-temporal variability of MOD over Arctic sea ice and 14 Arctic sub-regions in the period of 1979 to 2017 from passive microwave satellite data.A set of mathematical and statistical methods,including the Sen’s slope and Mann-Kendall mutation tests,were used to comprehensively assess the variation trend and abrupt points of MOD during the past 39 years for different Arctic sub-regions.Additionally,the correlation between Arctic Oscillation(AO)and MOD was analyzed.The results indicate that:(1)all Arctic sub-regions show a trend toward earlier MOD except the Bering Sea and St.Lawrence Gulf.The East Siberian Sea exhibits a significantly earlier trend,with the highest rate of-9.45 d/decade;(2)the temporal variability and statistical significance of MOD trend exhibit large interannual differences with different time windows for most regions in the Arctic;(3)during the past 39 years,the MOD changed abruptly in different years for different sub-regions;(4)the seasonal AO has more influence on MOD than monthly AO.The findings in this study can improve our knowledge of MOD changes and are beneficial for further Arctic climate change study.展开更多
In this paper, the East Asia summer monsoon onset date lines in East China are calculated by the definition similar to the traditional one, with the ECMWF reanalyzed 850 hPa daily wind and observed, reana-lyzed and co...In this paper, the East Asia summer monsoon onset date lines in East China are calculated by the definition similar to the traditional one, with the ECMWF reanalyzed 850 hPa daily wind and observed, reana-lyzed and combined daily rainfall during 1980 ~ 1993. To make the onset date line as close as possible to the previous work, the earliest onset date limits have to be applied for the regions with different latitude and the daily mean datasets have to be smoothed by space before calculation, therefore their space-resolution is reduced to about 3 longitude ×1 latitude. The results show that the multiyear mean summer monsoon onset date lines are quite similar to each other. Compared with the one from the reanalysis, the 14-year average onset date line form combination is obviously improved in the southern Sichuan Basin and the correlation between observed and combined onset date is also slightly higher over the Huaihe valley and Northeast China. Since daily rainfall combination also improved the long term daily mean and standard deviation through the pentad CMAP, if no better daily dataset is available, such a kind of daily rainfall combination can be used to get reasonable result in the Indian monsoon region without sufficient observatories or over the North Pacific without any ground obser-vation at all in future study.展开更多
Global gridded daily mean data from the NCEP/NCAR Reanalysis(1948-2012) are used to obtain the onset date,retreat date and duration time series of the South China Sea summer monsoon(SCSSM) for the past 65 years.The su...Global gridded daily mean data from the NCEP/NCAR Reanalysis(1948-2012) are used to obtain the onset date,retreat date and duration time series of the South China Sea summer monsoon(SCSSM) for the past 65 years.The summer monsoon onset(retreat) date is defined as the time when the mean zonal wind at 850 hPa shifts steadily from easterly(westerly) to westerly(easterly) and the pseudo-equivalent potential temperature at the same level remains steady at greater than 335 K(less than 335 K) in the South China Sea area[110-120°E(10-20°N)].The clockwise vortex of the equatorial Indian Ocean region,together with the cross-equatorial flow and the subtropical high,plays a decisive role in the burst of the SCSSM.The onset date of the SCSSM is closely related to its intensity.With late(early) onset of the summer monsoon,its intensity is relatively strong(weak),and the zonal wind undergoes an early(late) abrupt change in the upper troposphere.Climate warming significantly affects the onset and retreat dates of the SCSSM and its intensity.With climate warming,the number of early-onset(-retreat) years of the SCSSM is clearly greater(less),and the SCSSM is clearly weakened.展开更多
By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the in...By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the intensity and south-north location of MEJS center exhibit obvious seasonal variation characteristics. When MEJS is strong, it is at 27.5°N from the 67 th pentad to the 24 th pentad the following year; when MEJS is weak, it is at 45°N from the 38 th pentad to the 44 th pentad. The first Empirical Orthogonal Function(EOF) mode of 200-hPa zonal wind field shows that MEJS is mainly over Egypt and Saudi Arabia in winter and over the eastern Black Sea and the eastern Aral Sea in summer. MEJS intensity markedly weakens in summer in comparison with that in winter. The 26th-31 st pentad is the spring-summer transition of MEJS, and the 54th-61 st pentad the autumn-winter transition. During the two seasonal transitions, the temporal variations of the 500-200 hPa south-north temperature difference(SNTD) well match with 200-hPa zonal wind velocity, indicating that the former leads to the latter following the principle of thermal wind. A case analysis shows that there is a close relation between the onset date of Indian summer monsoon and the transition date of MEJS seasonal transition. When the outbreak date of Indian summer monsoon is earlier than normal, MEJS moves northward earlier because the larger SNTD between 500-200 hPa moves northward earlier, with the westerly jet in the lower troposphere over 40°-90°E appearing earlier than normal, and vice versa.展开更多
Results of the definition of South China Sea summer monsoon onset date and East Asian summermonsoon index in recent years are summarized in this paper. And more questions to be resolved are introducedlater.
本文对定义北半球平流层春季最后增温事件(Stratospheric Final Warming,SFW)爆发日期的三种不同方法进行了比较分析。三种方法分别为:1)基于平流层极夜急流核心纬度带(60°--75°N)逐日纬向平均纬向风最后一次由西风转为东风...本文对定义北半球平流层春季最后增温事件(Stratospheric Final Warming,SFW)爆发日期的三种不同方法进行了比较分析。三种方法分别为:1)基于平流层极夜急流核心纬度带(60°--75°N)逐日纬向平均纬向风最后一次由西风转为东风的时间,简称为逐日风场反转法;2)将月平均纬向风场数据线性插值成逐日数据,然后基于插值后的逐日纬向平均纬向风由西风转为东风的时间,简称为月均风场插值法;3)90°N与60°N之间纬向平均温度经向梯度最后一次由负转正的日期,简称为温度梯度反转法。结果表明,由逐日风场反转法和月均风场插值法得到的SFW爆发日期基本一致,但是当平流层冬末和春初发生爆发性增温时,两种方法确定的SFW爆发日期易出现较大偏差;温度梯度反转法确定的SFW爆发日期早于逐日风场反转法确定的SFW爆发日期,在30 hPa等压面层,两种方法定义的平均日期相差16 d。由于逐日风场反转法在实际使用时更为常见,因此,以该方法为参考,对温度梯度反转法进行修订,结果表明,如果将温度梯度反转法中的阈值由0 K提高为3 K,以上利用温度和风场确定的SFW爆发日期则基本一致。展开更多
基金funded by the National Key Research and De-velopment Program of China[Grant number 2017YFA0604304]the National Natural Science Foundation of China[Grant number 41661144032].
文摘Using a homogenized daily maximum temperature(T_(max))dataset across China,this study characterized the spatiotemporal variation of the onset date of extreme hot days in a year(i.e.,FirstEHD)during 1960-2018.Inhomogeneous trends of FirstEHD over China during 1960-2018 can be found,with the advanced trend of FirstEHD over most parts in China,while a number of stations in North-Central China(NC)show the delayed trend of FirstEHD.Moreover,there exist interdecadal changes of FirstEHD trend,with a remarkable difference in the trend magnitude before and after the 1990s over South China(SC),and the sign of trend can even reverse from negative to positive after the 1990s in Xinjiang(XJ)and Yangtze River Basin(YR),and from positive to negative in NC.The overall trends of FirstEHD over NC,YR,and XJ during 1960-2018 are dominated by the trends before the 1990s,while they are dominated by the sharp advance after the 1990s over SC.It is further found that the trend of FirstEHD can generally be explained by the long-term trend in T_(max) over most parts of China,but the contribution from T_(max) variabilities is also non-negligible and can even account for more than 75% of the overall trend over NC.The possible factors responsible for the decadal changes in FirstEHD trends are also discussed.
基金The National Key Research and Development Program of China under contract No.2018YFA0605403the National Natural Science Foundation of China under contract No.42071084Jiangyuan Zeng was supported by the Youth Innovation Promotion Association CAS under contract No.2018082。
文摘The melt onset dates(MOD)over Arctic sea ice plays an important role in the seasonal cycle of sea ice surface properties,which impacts Arctic surface solar radiation absorbed by the ice-ocean system.Monitoring interannual variations in MOD is valuable for understanding climate change.In this study,we investigated the spatio-temporal variability of MOD over Arctic sea ice and 14 Arctic sub-regions in the period of 1979 to 2017 from passive microwave satellite data.A set of mathematical and statistical methods,including the Sen’s slope and Mann-Kendall mutation tests,were used to comprehensively assess the variation trend and abrupt points of MOD during the past 39 years for different Arctic sub-regions.Additionally,the correlation between Arctic Oscillation(AO)and MOD was analyzed.The results indicate that:(1)all Arctic sub-regions show a trend toward earlier MOD except the Bering Sea and St.Lawrence Gulf.The East Siberian Sea exhibits a significantly earlier trend,with the highest rate of-9.45 d/decade;(2)the temporal variability and statistical significance of MOD trend exhibit large interannual differences with different time windows for most regions in the Arctic;(3)during the past 39 years,the MOD changed abruptly in different years for different sub-regions;(4)the seasonal AO has more influence on MOD than monthly AO.The findings in this study can improve our knowledge of MOD changes and are beneficial for further Arctic climate change study.
基金National Science Foundation of China (No.49875020) and National Key Programme for developing Basic Sciences (No. G1999043803)
文摘In this paper, the East Asia summer monsoon onset date lines in East China are calculated by the definition similar to the traditional one, with the ECMWF reanalyzed 850 hPa daily wind and observed, reana-lyzed and combined daily rainfall during 1980 ~ 1993. To make the onset date line as close as possible to the previous work, the earliest onset date limits have to be applied for the regions with different latitude and the daily mean datasets have to be smoothed by space before calculation, therefore their space-resolution is reduced to about 3 longitude ×1 latitude. The results show that the multiyear mean summer monsoon onset date lines are quite similar to each other. Compared with the one from the reanalysis, the 14-year average onset date line form combination is obviously improved in the southern Sichuan Basin and the correlation between observed and combined onset date is also slightly higher over the Huaihe valley and Northeast China. Since daily rainfall combination also improved the long term daily mean and standard deviation through the pentad CMAP, if no better daily dataset is available, such a kind of daily rainfall combination can be used to get reasonable result in the Indian monsoon region without sufficient observatories or over the North Pacific without any ground obser-vation at all in future study.
基金National Key Basic Research and Development Planning Program of China(Program 973)(2013CB430202)Basic Research Program of Jiangsu Province,China(BK20130997)+1 种基金National Natural Science Fund of China(91337109)Project Funded by the Priority Academic program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Global gridded daily mean data from the NCEP/NCAR Reanalysis(1948-2012) are used to obtain the onset date,retreat date and duration time series of the South China Sea summer monsoon(SCSSM) for the past 65 years.The summer monsoon onset(retreat) date is defined as the time when the mean zonal wind at 850 hPa shifts steadily from easterly(westerly) to westerly(easterly) and the pseudo-equivalent potential temperature at the same level remains steady at greater than 335 K(less than 335 K) in the South China Sea area[110-120°E(10-20°N)].The clockwise vortex of the equatorial Indian Ocean region,together with the cross-equatorial flow and the subtropical high,plays a decisive role in the burst of the SCSSM.The onset date of the SCSSM is closely related to its intensity.With late(early) onset of the summer monsoon,its intensity is relatively strong(weak),and the zonal wind undergoes an early(late) abrupt change in the upper troposphere.Climate warming significantly affects the onset and retreat dates of the SCSSM and its intensity.With climate warming,the number of early-onset(-retreat) years of the SCSSM is clearly greater(less),and the SCSSM is clearly weakened.
基金Project of Natural Science Foundation of China(41205035,40905045,40775059)National Basic Research and Development Program of China(2013CB430202)+3 种基金NSF of Jiangsu Higher Education Institutions(13KJB170013)Special Scientific Research Fund of Public Welfare Industries of China(GYHY201306028)Qing Lan ProjectProject Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘By using the NCEP/NCAR pentad reanalysis data from 1968 to 2009, the variation characteristics of Middle East jet stream(MEJS) and its thermal mechanism during seasonal transition are studied. Results show that the intensity and south-north location of MEJS center exhibit obvious seasonal variation characteristics. When MEJS is strong, it is at 27.5°N from the 67 th pentad to the 24 th pentad the following year; when MEJS is weak, it is at 45°N from the 38 th pentad to the 44 th pentad. The first Empirical Orthogonal Function(EOF) mode of 200-hPa zonal wind field shows that MEJS is mainly over Egypt and Saudi Arabia in winter and over the eastern Black Sea and the eastern Aral Sea in summer. MEJS intensity markedly weakens in summer in comparison with that in winter. The 26th-31 st pentad is the spring-summer transition of MEJS, and the 54th-61 st pentad the autumn-winter transition. During the two seasonal transitions, the temporal variations of the 500-200 hPa south-north temperature difference(SNTD) well match with 200-hPa zonal wind velocity, indicating that the former leads to the latter following the principle of thermal wind. A case analysis shows that there is a close relation between the onset date of Indian summer monsoon and the transition date of MEJS seasonal transition. When the outbreak date of Indian summer monsoon is earlier than normal, MEJS moves northward earlier because the larger SNTD between 500-200 hPa moves northward earlier, with the westerly jet in the lower troposphere over 40°-90°E appearing earlier than normal, and vice versa.
基金Natural Science Foundation of China (grant No.40233027)Natural Science Foundation ofChina (Project 90211010)"Research on the monitoring and service of South China Sea monsoons", ResearchFund for Tropical Marine Meteorology
文摘Results of the definition of South China Sea summer monsoon onset date and East Asian summermonsoon index in recent years are summarized in this paper. And more questions to be resolved are introducedlater.