The goal of photocatalytic CO_(2)reduction is to obtain a single energy-bearing product with high efficiency and stability.Consequently,constructing highly selective photocatalysts with enhanced surface and optoelectr...The goal of photocatalytic CO_(2)reduction is to obtain a single energy-bearing product with high efficiency and stability.Consequently,constructing highly selective photocatalysts with enhanced surface and optoelectronic properties is crucial for achieving this objective.Here,we have developed a simple one-pot vulcanization method to synthesize a MIL-68(In)-derived Cd In_(2)S_(4)/In_(2)S_(3)heterojunction that exhibited stable and high selectivity.Multiple characterizations of the Cd In_(2)S_(4)/In_(2)S_(3)heterojunction revealed a hierarchical tubular structure with numerous surface reactive sites,a high visible-light utilization rate(λ<600 nm),efficient charge separation,and a prolonged charge-carrier lifetime.Moreover,an S-scheme charge transfer mechanism,based on the interleaved band between the two components,improved the reduction capability of the electrons.Benefiting from the compositional and structural synergy,the yield CO by Cd In_(2)S_(4)/In_(2)S_(3)-250(CI-250)reached 135.62μmol·g^(-1)·h^(-1),which was 49.32 times and 32.88 times higher than that of In_(2)S_(3)and Cd In_(2)S_(4),respectively.The Cd In_(2)S_(4)/In_(2)S_(3)heterojunction exhibited a quantum efficiency of 4.23%with a CO selectivity of 71%.Four cycle tests confirmed the good stability and recyclability of the CI-250.This work provides a new approach for designing and preparing high-performance hollow MOFsbased photocatalysts for scalable and sustainable CO_(2)reduction.展开更多
Rare earth metal oxides possess unique electronic properties,which are highly desirable for the fabrication of pseudocapacitor electrodes.The present study demonstrates the synthesis of boron doped graphitic carbon ni...Rare earth metal oxides possess unique electronic properties,which are highly desirable for the fabrication of pseudocapacitor electrodes.The present study demonstrates the synthesis of boron doped graphitic carbon nitride composite with varying concentrations of cerium(B-g-C_(3)N_(4)-Ce(wt%))via a facile one-pot method.A detailed investigation was carried out to elucidate the effects of doping as well as the amount of cerium on the active electrode structure.The structure and morphology of the samples were analyzed using X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersive spectroscopy(EDS)and X-ray photoelectron spectroscopy(XPS).The structural and morphological analysis suggests the incorporation of boron into the graphitic carbon nitride phase,with spherical cerium oxide particles being embedded homogeneously in that matrix.Electrochemical characterization of the samples was carried out using cyclic voltammetry(CV),galvanostatic charge-discharge(GCD)and electrochemical impedance spectroscopy(EIS)and it is found that in-between the potential window of 0-0.45 V in a 3 mol/L potassium hydroxide(KOH)electrolyte,the Bg-C_(3)N_(4)-Ce(3%)composite displays a superior specific capacitance value of 1826.7 F/g at a current density of 1.5 A/g.The B-g-C_(3)N_(4)-Ce(3%)demonstrates excellent pseudocapacitance behavior with a high pseudocapacitance contribution.At current densities of 7.5 A/g,the heterostructure composite B-g-C_(3)N_(4)-Ce(3%)shows capacitance retention of 87%after 10000 cycles.The synergistic contribution of the individual components of the composite is explained for a better understanding of the capacitive mechanism.展开更多
By investigating 17 peptide arylthioesters that were previously challenging to produce,this study reveals a clear correlation between increased ligation activity and decreased pKa values of their corresponding arylthi...By investigating 17 peptide arylthioesters that were previously challenging to produce,this study reveals a clear correlation between increased ligation activity and decreased pKa values of their corresponding arylthiols.The observed differences are attributed to variations in thioester bond strength and steric hindrance.These insights have led to the development of an improved one-pot chemical protein synthesis approach that leverages the reactivity differences between peptide arylthioesters with C-terminal Ala-SPh(4-NO_(2))and Ala-S-Ph(2,6-diCH_(3)).This approach eliminates the need for thiol-thioester exchange and additive removal steps while enabling in situ desulfurization,thereby significantly simplifying the protein synthesis process.展开更多
An efficient and environmental-friendly one-pot procedure has been developed for the synthesis of 1,3,4-oxadiazole-5- thioethers by the reaction of acylhydrazine with carbon disulfide and organic halides or α, β-uns...An efficient and environmental-friendly one-pot procedure has been developed for the synthesis of 1,3,4-oxadiazole-5- thioethers by the reaction of acylhydrazine with carbon disulfide and organic halides or α, β-unsaturated carbonyl compounds. The reactions were carried out in water in the presence of potassium phosphate within 2-4 h to afford the expected products in excellent yields.展开更多
A highly branched polycarbosilane bearing allyl groups has been prepared by a one-pot synthesis with chloromethyltrichlorosilane, chloromethylmethyldichlorosilane and allyl chloride as the starting materials. The resu...A highly branched polycarbosilane bearing allyl groups has been prepared by a one-pot synthesis with chloromethyltrichlorosilane, chloromethylmethyldichlorosilane and allyl chloride as the starting materials. The resultant polymer, with the approximate formula [SiH1.2(CH3)0.71(CH2CHCH2)0.09CH2]n, has been characterized by 1H, 13C, and 29Si NMR, GPC, TG and elemental analysis. It could be cross-linked thermally at 170 °C in the absence of oxygen. Pyrolysis of the polymer gave a ceramic with a yield of about 70%.展开更多
Butyl levulinate(BL) is a promising new candidate as diesel fuel and fuel additive. In this study, an efficient process for a one-pot synthesis of BL from biomass-derived carbohydrates in butanol medium with the cat...Butyl levulinate(BL) is a promising new candidate as diesel fuel and fuel additive. In this study, an efficient process for a one-pot synthesis of BL from biomass-derived carbohydrates in butanol medium with the catalysis of metal sulfates was developed. The catalytic activity of a series of metal sulfates for the synthesis of BL from fructose was investigated. Among various metal sulfates, ferric sulfate Fe(SO)was found to be the most efficient catalyst, which gave a remarkably high BL yield of 62.8 mol% under the conditions of 463 K, 3 h, a catalyst dosage of 5.0 g/L, and fructose concentration of 25 g/L. Different carbohydrates including glucose, cellulose, inulin and sucrose were also used for one-pot synthesis of BL with the catalysis of Fe(SO), showing the yields of 39.6, 30.5, 56.6 and 50.1 mol%, respectively. In addition,the recycling and reuse of Fe(SO)was studied by characterizing them using powder X-ray diffraction(XRD), scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS). A plausible reaction pathway for the one-pot synthesis of BL from fructose was proposed. This study provides a facile and feasible way for the synthesis of BL from biomass.展开更多
A facile one-pot synthesis of 2-aminothiazoles has been carried in PEG-400 as a greener medium at room temperature.This method avoids the use of lachrymatric a-bromoketones as well as the volatile,toxic organic solvents.
Hydro isomerization of linear alkanes to branched isomers is an important petrochemical process for production of gasoline with high octane number.Non-noble metal bifunctional catalysts used in this process always suf...Hydro isomerization of linear alkanes to branched isomers is an important petrochemical process for production of gasoline with high octane number.Non-noble metal bifunctional catalysts used in this process always suffer from low metal dispersion and poor metal-acid synergy.Herein,a facile one-pot synthesis method was used to simultaneously regulate metal particle sizes and acidity of the Ni-SAPO-11 hydroisomerization catalyst.The physicochemical properties are investigated using XANES,EXAFS,TEM/STEM,FT-IR,XPS,UV-vis and NH_3-TPD.Apart from the highly dispersed nickel nanoparticles with an average diameter of 8 nm,the framework Ni~(2+)ions are generated via substituting framework Al~(3+)ions of the SAPO-11.The formed NiP-OH structures have lower deprotonation energy(DPE)than the SiAl-OH ones,contributing more and stronger acid sites to the Ni-SAPO-11 catalyst.The great metal-acid synergy including high metal to acid sites ratio(n_(Ni)/n_A)and close intimacy is obtained for the Ni-SAPO-11 catalyst.The Ni-SAPO-11 catalyst outperforms the counterpart prepared by the impregnation method and exhibits comparable activity and isomers selectivity to the Pt/SAPO-11 catalyst in the n-hexane hydroisomerization.展开更多
Three-dimensional(3D)bioprinting has revolutionized tissue engineering by enabling precise fabrication with bioinks.Among these techniques,digital light processing(DLP)stands out due to its exceptional resolution,spee...Three-dimensional(3D)bioprinting has revolutionized tissue engineering by enabling precise fabrication with bioinks.Among these techniques,digital light processing(DLP)stands out due to its exceptional resolution,speed,and biocompatibility.However,the progress of DLP is hindered by the limited availability of suitable bioinks.Currently,some studies involve simple mixing of different materials,resulting in bioinks that lack uniformity and photopolymerization characteristics.To address this challenge,we present an innovative one-pot synthesis method for bioinks based on methacrylated gelatin/alginate with hydroxyapatite(HAP).This approach offers significant advantages in terms of efficiency and uniformity.The synthesized bioinks demonstrate excellent printability,stability,and notably enhanced mechanical properties,facilitating optimal in vitro compatibility.Additionally,the HAP-hybrid bioinks printed scaffolds demonstrated impressive bone repair capabilities in vivo compared with pure organic bioinks.In conclusion,the Gel/Alg/HAP bioinks presented herein offer an innovative solution for DLP bioprinting within the field of bone tissue engineering.Their multifaceted advantages help overcome the limitations of restricted bioink choices,pushing forward the boundaries of bioprinting technology and contributing to the progress of regenerative medicine and tissue engineering.展开更多
Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)posses...Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)possessing excellent electronic and geometric properties have received increasing interests as highly active electrocatalysts.Herein,we report a series of Pt_(x)Co/C(x=1,2,3)catalysts by a facile one-pot soft-chemistry method.In the acidic conditions,the mass activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 0.526,0.462 and 0.441 A·mgPt^(-1),which are 2.60,2.31 and 2.22 times higher than that of Pt/C(0.200 A·mgPt^(-1)),respectively.The specific activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 706.59,679.41 and 801.83μA·cm^(-2),which are accordingly 2.89,2.76 and 3.28 times higher than that of Pt/C(244.75μA·cm^(-2)).Notably,Pt_(3)Co/C shows a remarkable durability.After 5000 cycles of the accelerated durability testing,the mass activity and specific activity of Pt_(3)Co/C catalyst are 2.47 and 3.80 times higher than that of the commercial Pt/C,respectively.The improved ORR activity and durability can be ascribed to the synergistic interaction between Pt and Co.展开更多
In this study,a convenient method of preparing the substrate is proposed with one-pot synthesis of silver colloid under body heat,and the SERS detection uses the fresh substrate to avoid the drawback of substrates’sh...In this study,a convenient method of preparing the substrate is proposed with one-pot synthesis of silver colloid under body heat,and the SERS detection uses the fresh substrate to avoid the drawback of substrates’short life of use.The synthesis of silver colloid is carried out in a 10 mL vial by using ascorbic acid as a reductant and trisodium citrate as a stabilizer.The vial is grasped with the palm of the experimenter for several minutes without shaking.The proposed method is simple,rapid,green energy and cost-effective.By adjusting the concentration of trisodium citrate,not only the particle size can be controlled from about 110 nm to 50 nm but also the homogeneity of nanoparticles can be improved.As a SERS substrate,the silver colloid has high batch reproducibility and showed good SERS activity.The relative standard deviation between different manufacturers is 5.51%when the substrate of silver colloid is used for the detection of rhodamine 6 G.Using the substrate,the lowest detection concentrations of rhodamine 6 G,crystal violet,enrofloxacin,melamine and leucomalachite green are 1.0×10-8,6.1×10-8,1.4×10-6,7.1×10-5 and 5.1×10-8 mol/L,respectively.Results demonstrate that the developed method has the advantage of convenience and high efficiency in the field preparation of reliable SERS substrate.展开更多
Novel Lewis acidic ionic liquids containing thionyl cations and chloroaluminate anions were obtained by one-pot synthesis for the first time. Their acidities were determined by acetonitrile probe on IR spectrography. ...Novel Lewis acidic ionic liquids containing thionyl cations and chloroaluminate anions were obtained by one-pot synthesis for the first time. Their acidities were determined by acetonitrile probe on IR spectrography. The ionic liquids were used as catalyst for Friedel-Crafts alkylation of benzene and 1-dodecene. The turnovers of l-dodecene were higher than 99%. Monoalkylbenzene selectivity was 98%, while the 2-substituent product selectivity was 45%.展开更多
The conversion of hemicellulose-derived xylose to furfuryl alcohol is a practical procedure for producing value-added chemicals from biomass.In this study,a bifunctional Cu/SBA-15-SO3 H catalyst was employed for the o...The conversion of hemicellulose-derived xylose to furfuryl alcohol is a practical procedure for producing value-added chemicals from biomass.In this study,a bifunctional Cu/SBA-15-SO3 H catalyst was employed for the one-pot catalytic conversion of xylose to furfuryl alcohol with a yield of up to 62.6% at the optimized conditions of 140℃,4 MPa,and for 6 h in a biphasic water/n-butanol solvent.A high reaction temperature resulted in further hydrogenation to 2-methyl furan,while a high hydrogen pressure led to a side hydrogenation reaction to xylitol.The biphasic solvent allowed xylose solvation as well as furfuryl product extraction.The acidic-SO3 H sites and Cu sites co-existed,maintained a balance,and cooperatively catalyzed the cascade conversion.Excessive acidic sites and large pores could promote the xylose conversion,although a low furfuryl alcohol yield was obtained.This catalytic system could be potentially applied to the one-pot synthesis of furfuryl alcohol from hemicellulose-derived xylose.展开更多
In this study, 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHS) is used as an efficient and reusable ionic liquid for the green, mild, and efficient synthesis of xanthenes under solvent-free conditions. Sim...In this study, 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHS) is used as an efficient and reusable ionic liquid for the green, mild, and efficient synthesis of xanthenes under solvent-free conditions. Simple and easy work-up, low cost, green process, short reaction times and excellent yields of the products are the advantages of this procedure. Further, the catalyst can be recycled and reused at least for four times without a noticeably decrease in its catalytic activity.展开更多
An efficient and easy method for one-pot three-component synthesis of l,3-disubstituted-3H-benzo[f]chromenes by the condensation of naphtol,aromatic aldehyde derivatives and phenylacetylene in the presence of ferric h...An efficient and easy method for one-pot three-component synthesis of l,3-disubstituted-3H-benzo[f]chromenes by the condensation of naphtol,aromatic aldehyde derivatives and phenylacetylene in the presence of ferric hydrogensulfate[Fe(HSO4)3], has been described.The catalyst displayed high activity which afforded the corresponding 1,3-disubstituted-3H-benzo[f]chromenes in satisfying yields.Alkyl-substituted phenols were examined and the corresponding benzopyran derivatives were synthesized in moderate yields.Heterogeneous nature of the using catalyst made it reusable for further chemical reactions.展开更多
Chloropropyl-functionalized mesoporous MCM-41(MCM-41-(CH2)3Cl) was synthesized in alkaline medium by the microwave radiation one-pot method, using cetyltrimethy-lammoniumbromide (CTAB) as novel template, tetraet...Chloropropyl-functionalized mesoporous MCM-41(MCM-41-(CH2)3Cl) was synthesized in alkaline medium by the microwave radiation one-pot method, using cetyltrimethy-lammoniumbromide (CTAB) as novel template, tetraethoxysilane (TEOS) as silica source, and chloropropyltriethoxysilane (C1PTES) as the coupling agent. The microstructure of MCM-41-(CH2)3Cl was characterized by the means of X-ray diffraction (XRD), nitrogen absorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that a successful synthesis of MCM-41-(CH2)3Cl with well structure is obtained. The optimal microwave power is 120 W and the best microwave time is 50 rain. The dosage of chloropropyltriethoxysilane on the structure of chloropropyl-functionalzed MCM-41 was also investigated. It is found that the chloropropyltriethoxysilane volume between 0.8 mL and 1.6 mL is favorable for the formation of highly ordered MCM-41-(CH2)3Cl mesostructure.展开更多
An improved method for the large-scale preparation of 4,6-dihydroxyisophthalic acid and 2,3-dihydroxyterephthalic acid has been developed.Compared to the previous procedures,this new process-requires much lower CO2 pr...An improved method for the large-scale preparation of 4,6-dihydroxyisophthalic acid and 2,3-dihydroxyterephthalic acid has been developed.Compared to the previous procedures,this new process-requires much lower CO2 pressure of 0.3 Mpa and shorter reaction time.thus providing a convenient access for large-scale synthesis.The yield is high (93% and 65%,respectively), and the oxidation of phenol is nearly inhibited,neither decolorization nor further chromatographic purification is required.展开更多
2,4,5-Triarylimidazoles could be obtained in excellent yields by the one-pot three-component condensation of benzil/benzoin, aldehydes and ammonium acetate in the presence of catalytic amount of the inexpensive, readi...2,4,5-Triarylimidazoles could be obtained in excellent yields by the one-pot three-component condensation of benzil/benzoin, aldehydes and ammonium acetate in the presence of catalytic amount of the inexpensive, readily available and non-toxic ceric (IV) ammonium nitrate (CAN) in aqueous media under ultrasound at room temperature. In this reaction the products were obtained in short reaction time and easy operation under mild conditions.展开更多
Series of Fe/Cu-SSZ-13 catalysts with different Fe loading content were synthesized by simple one-pot strategy.The obtained catalysts were subjected to selective catalytic reduction(SCR)of NO x with NH 3 and were char...Series of Fe/Cu-SSZ-13 catalysts with different Fe loading content were synthesized by simple one-pot strategy.The obtained catalysts were subjected to selective catalytic reduction(SCR)of NO x with NH 3 and were characterized by various techniques.The results show that Fe 0.63/Cu 1.50-SSZ-13 catalyst with proper Fe content exhibits excellent catalytic activity with widest operation temperature window from 160 to 580℃,excellent hydrothermal stability as well as good resistance to sulfur poisoning when compared with Cu-SSZ-13,signifying its great potential for practical applications.Further characterizations reveal that the synthesized Fe/Cu-SSZ-13 catalysts present typical chabazite(CHA)structure with good crystallinity,while isolated Cu^2+and monomeric Fe 3+are revealed as the predominant copper and iron species.At low temperatures,isolated Cu^2+species act as primary active sites for SCR reaction,while monomeric Fe^3+species provide sufficient active sites for sustain the SCR activity at high temperature.Moreover,Fe over doping would lead to the damage of zeolite structure,destruction of isolated Cu^2+site,as well as the formation of highly oxidizing Fe2O3,thus causing deterioration of catalytic performances.展开更多
A simple one-pot non-isocyanate route for synthesizing thermoplastic polyureas is presented. In situ urethanization was conducted from the ring-opening reaction of ethylene carbonate with poly(propylene glycol) bis(2-...A simple one-pot non-isocyanate route for synthesizing thermoplastic polyureas is presented. In situ urethanization was conducted from the ring-opening reaction of ethylene carbonate with poly(propylene glycol) bis(2-aminopropyl ether) and hexanediamine,m-xylylenediamine, or diethylene glycol bis(3-aminopropyl) ether at 100 °C for 6 h under normal pressure. Melt transurethane polycondensation was successively conducted at 170 °C under a reduced pressure of 399 Pa for different time periods. A series of nonisocyanate thermoplastic polyureas(NI-TPUreas) were prepared. The NI-TPUreas were characterized by gel permeation chromatography,FTIR, 1 H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy,and tensile test. NI-TPUreas exhibited Mn of up to 1.67 × 104 g/mol, initial decomposition temperature over 290 °C, and tensile strength of up to 32 MPa. Several crystallizable NI-TPUreas exhibited Tm exceeding 98 °C. NI-TPUreas with good thermal and mechanical properties were prepared through a green and simple one-pot non-isocyanate route.展开更多
基金financially supported by the Program for the Development of Science and Technology of Jilin Province(Nos.20240601047RC and YDZJ202201ZYTS629)Hainan Province Science and Technology Special Fund(No.ZDYF2022SHFZ090)+1 种基金the National Natural Science Foundation(Nos.22466017 and 22061014)the specific research fund of the Innovation Platform for Academicians of Hainan Province。
文摘The goal of photocatalytic CO_(2)reduction is to obtain a single energy-bearing product with high efficiency and stability.Consequently,constructing highly selective photocatalysts with enhanced surface and optoelectronic properties is crucial for achieving this objective.Here,we have developed a simple one-pot vulcanization method to synthesize a MIL-68(In)-derived Cd In_(2)S_(4)/In_(2)S_(3)heterojunction that exhibited stable and high selectivity.Multiple characterizations of the Cd In_(2)S_(4)/In_(2)S_(3)heterojunction revealed a hierarchical tubular structure with numerous surface reactive sites,a high visible-light utilization rate(λ<600 nm),efficient charge separation,and a prolonged charge-carrier lifetime.Moreover,an S-scheme charge transfer mechanism,based on the interleaved band between the two components,improved the reduction capability of the electrons.Benefiting from the compositional and structural synergy,the yield CO by Cd In_(2)S_(4)/In_(2)S_(3)-250(CI-250)reached 135.62μmol·g^(-1)·h^(-1),which was 49.32 times and 32.88 times higher than that of In_(2)S_(3)and Cd In_(2)S_(4),respectively.The Cd In_(2)S_(4)/In_(2)S_(3)heterojunction exhibited a quantum efficiency of 4.23%with a CO selectivity of 71%.Four cycle tests confirmed the good stability and recyclability of the CI-250.This work provides a new approach for designing and preparing high-performance hollow MOFsbased photocatalysts for scalable and sustainable CO_(2)reduction.
基金supported by Indian National Science Academy Visiting Scientist Fellowship(INSA/SP/VSP-15/2022-23)。
文摘Rare earth metal oxides possess unique electronic properties,which are highly desirable for the fabrication of pseudocapacitor electrodes.The present study demonstrates the synthesis of boron doped graphitic carbon nitride composite with varying concentrations of cerium(B-g-C_(3)N_(4)-Ce(wt%))via a facile one-pot method.A detailed investigation was carried out to elucidate the effects of doping as well as the amount of cerium on the active electrode structure.The structure and morphology of the samples were analyzed using X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersive spectroscopy(EDS)and X-ray photoelectron spectroscopy(XPS).The structural and morphological analysis suggests the incorporation of boron into the graphitic carbon nitride phase,with spherical cerium oxide particles being embedded homogeneously in that matrix.Electrochemical characterization of the samples was carried out using cyclic voltammetry(CV),galvanostatic charge-discharge(GCD)and electrochemical impedance spectroscopy(EIS)and it is found that in-between the potential window of 0-0.45 V in a 3 mol/L potassium hydroxide(KOH)electrolyte,the Bg-C_(3)N_(4)-Ce(3%)composite displays a superior specific capacitance value of 1826.7 F/g at a current density of 1.5 A/g.The B-g-C_(3)N_(4)-Ce(3%)demonstrates excellent pseudocapacitance behavior with a high pseudocapacitance contribution.At current densities of 7.5 A/g,the heterostructure composite B-g-C_(3)N_(4)-Ce(3%)shows capacitance retention of 87%after 10000 cycles.The synergistic contribution of the individual components of the composite is explained for a better understanding of the capacitive mechanism.
基金CAMS Innovation Fund for Medical Sciences(CIFMS,No.2021-I2M-1-026)the National Key R&D Program of China(No.2018YFE0111400)+6 种基金the NIH Research Project Grant Program(No.R01 EB025892)the National Natural Science Foundation of China(the Training Program of the Major Research Plan,No.91853120)the National Major Scientific and Technological Special Project of China(Nos.2018ZX09711001-005 and 2018ZX09711001-013)the State Key Laboratory of Bioactive Substance and Function of Natural Medicines,Institute of Materia Medicathe Biomedical High Performance Computing Platform,Chinese Academy of Medical Sciencesthe Chinese Academy of Medical SciencesPeking Union Medical College for funding and support.
文摘By investigating 17 peptide arylthioesters that were previously challenging to produce,this study reveals a clear correlation between increased ligation activity and decreased pKa values of their corresponding arylthiols.The observed differences are attributed to variations in thioester bond strength and steric hindrance.These insights have led to the development of an improved one-pot chemical protein synthesis approach that leverages the reactivity differences between peptide arylthioesters with C-terminal Ala-SPh(4-NO_(2))and Ala-S-Ph(2,6-diCH_(3)).This approach eliminates the need for thiol-thioester exchange and additive removal steps while enabling in situ desulfurization,thereby significantly simplifying the protein synthesis process.
基金Natural Science Foundation of China (Grant No.20672009)the Major State Basic Research Development Program(Grant No.2004CB719900).
文摘An efficient and environmental-friendly one-pot procedure has been developed for the synthesis of 1,3,4-oxadiazole-5- thioethers by the reaction of acylhydrazine with carbon disulfide and organic halides or α, β-unsaturated carbonyl compounds. The reactions were carried out in water in the presence of potassium phosphate within 2-4 h to afford the expected products in excellent yields.
文摘A highly branched polycarbosilane bearing allyl groups has been prepared by a one-pot synthesis with chloromethyltrichlorosilane, chloromethylmethyldichlorosilane and allyl chloride as the starting materials. The resultant polymer, with the approximate formula [SiH1.2(CH3)0.71(CH2CHCH2)0.09CH2]n, has been characterized by 1H, 13C, and 29Si NMR, GPC, TG and elemental analysis. It could be cross-linked thermally at 170 °C in the absence of oxygen. Pyrolysis of the polymer gave a ceramic with a yield of about 70%.
基金financially supported by the National Natural Science Foundation of China (nos.21176227 and U1404519)
文摘Butyl levulinate(BL) is a promising new candidate as diesel fuel and fuel additive. In this study, an efficient process for a one-pot synthesis of BL from biomass-derived carbohydrates in butanol medium with the catalysis of metal sulfates was developed. The catalytic activity of a series of metal sulfates for the synthesis of BL from fructose was investigated. Among various metal sulfates, ferric sulfate Fe(SO)was found to be the most efficient catalyst, which gave a remarkably high BL yield of 62.8 mol% under the conditions of 463 K, 3 h, a catalyst dosage of 5.0 g/L, and fructose concentration of 25 g/L. Different carbohydrates including glucose, cellulose, inulin and sucrose were also used for one-pot synthesis of BL with the catalysis of Fe(SO), showing the yields of 39.6, 30.5, 56.6 and 50.1 mol%, respectively. In addition,the recycling and reuse of Fe(SO)was studied by characterizing them using powder X-ray diffraction(XRD), scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS). A plausible reaction pathway for the one-pot synthesis of BL from fructose was proposed. This study provides a facile and feasible way for the synthesis of BL from biomass.
文摘A facile one-pot synthesis of 2-aminothiazoles has been carried in PEG-400 as a greener medium at room temperature.This method avoids the use of lachrymatric a-bromoketones as well as the volatile,toxic organic solvents.
基金the National Natural Science Foundation of China(21978326 and 21991091)the Fundamental Research Funds for the Central Universities(20CX06059A)+2 种基金the China Postdoctoral Science Foundation(2020M682259)the Postdoctoral Applied Research Project of Qingdao(qd20200002)the Natural Science Foundation of Shandong Province(ZR2019MB029)。
文摘Hydro isomerization of linear alkanes to branched isomers is an important petrochemical process for production of gasoline with high octane number.Non-noble metal bifunctional catalysts used in this process always suffer from low metal dispersion and poor metal-acid synergy.Herein,a facile one-pot synthesis method was used to simultaneously regulate metal particle sizes and acidity of the Ni-SAPO-11 hydroisomerization catalyst.The physicochemical properties are investigated using XANES,EXAFS,TEM/STEM,FT-IR,XPS,UV-vis and NH_3-TPD.Apart from the highly dispersed nickel nanoparticles with an average diameter of 8 nm,the framework Ni~(2+)ions are generated via substituting framework Al~(3+)ions of the SAPO-11.The formed NiP-OH structures have lower deprotonation energy(DPE)than the SiAl-OH ones,contributing more and stronger acid sites to the Ni-SAPO-11 catalyst.The great metal-acid synergy including high metal to acid sites ratio(n_(Ni)/n_A)and close intimacy is obtained for the Ni-SAPO-11 catalyst.The Ni-SAPO-11 catalyst outperforms the counterpart prepared by the impregnation method and exhibits comparable activity and isomers selectivity to the Pt/SAPO-11 catalyst in the n-hexane hydroisomerization.
基金financial support from the National Natural Science Foundation of China(Nos.82202335,82230071,and 82172098)the Shanghai Sailing Program(No.22YF1414000).
文摘Three-dimensional(3D)bioprinting has revolutionized tissue engineering by enabling precise fabrication with bioinks.Among these techniques,digital light processing(DLP)stands out due to its exceptional resolution,speed,and biocompatibility.However,the progress of DLP is hindered by the limited availability of suitable bioinks.Currently,some studies involve simple mixing of different materials,resulting in bioinks that lack uniformity and photopolymerization characteristics.To address this challenge,we present an innovative one-pot synthesis method for bioinks based on methacrylated gelatin/alginate with hydroxyapatite(HAP).This approach offers significant advantages in terms of efficiency and uniformity.The synthesized bioinks demonstrate excellent printability,stability,and notably enhanced mechanical properties,facilitating optimal in vitro compatibility.Additionally,the HAP-hybrid bioinks printed scaffolds demonstrated impressive bone repair capabilities in vivo compared with pure organic bioinks.In conclusion,the Gel/Alg/HAP bioinks presented herein offer an innovative solution for DLP bioprinting within the field of bone tissue engineering.Their multifaceted advantages help overcome the limitations of restricted bioink choices,pushing forward the boundaries of bioprinting technology and contributing to the progress of regenerative medicine and tissue engineering.
基金financially supported by the Project of National Natural Science Foundation of China(No.5202780089)。
文摘Designing highly active and durable electrocatalysts towards oxygen reduction reaction(ORR)plays a paramount importance for proton exchange membrane fuel cells.Pt-based binary alloys Pt-M(M=3d-transition metals)possessing excellent electronic and geometric properties have received increasing interests as highly active electrocatalysts.Herein,we report a series of Pt_(x)Co/C(x=1,2,3)catalysts by a facile one-pot soft-chemistry method.In the acidic conditions,the mass activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 0.526,0.462 and 0.441 A·mgPt^(-1),which are 2.60,2.31 and 2.22 times higher than that of Pt/C(0.200 A·mgPt^(-1)),respectively.The specific activities of PtCo/C,Pt_(2)Co/C and Pt_(3)Co/C are 706.59,679.41 and 801.83μA·cm^(-2),which are accordingly 2.89,2.76 and 3.28 times higher than that of Pt/C(244.75μA·cm^(-2)).Notably,Pt_(3)Co/C shows a remarkable durability.After 5000 cycles of the accelerated durability testing,the mass activity and specific activity of Pt_(3)Co/C catalyst are 2.47 and 3.80 times higher than that of the commercial Pt/C,respectively.The improved ORR activity and durability can be ascribed to the synergistic interaction between Pt and Co.
文摘In this study,a convenient method of preparing the substrate is proposed with one-pot synthesis of silver colloid under body heat,and the SERS detection uses the fresh substrate to avoid the drawback of substrates’short life of use.The synthesis of silver colloid is carried out in a 10 mL vial by using ascorbic acid as a reductant and trisodium citrate as a stabilizer.The vial is grasped with the palm of the experimenter for several minutes without shaking.The proposed method is simple,rapid,green energy and cost-effective.By adjusting the concentration of trisodium citrate,not only the particle size can be controlled from about 110 nm to 50 nm but also the homogeneity of nanoparticles can be improved.As a SERS substrate,the silver colloid has high batch reproducibility and showed good SERS activity.The relative standard deviation between different manufacturers is 5.51%when the substrate of silver colloid is used for the detection of rhodamine 6 G.Using the substrate,the lowest detection concentrations of rhodamine 6 G,crystal violet,enrofloxacin,melamine and leucomalachite green are 1.0×10-8,6.1×10-8,1.4×10-6,7.1×10-5 and 5.1×10-8 mol/L,respectively.Results demonstrate that the developed method has the advantage of convenience and high efficiency in the field preparation of reliable SERS substrate.
基金the grant from the National Natural Science Foundation of China (Key Program 20533010).
文摘Novel Lewis acidic ionic liquids containing thionyl cations and chloroaluminate anions were obtained by one-pot synthesis for the first time. Their acidities were determined by acetonitrile probe on IR spectrography. The ionic liquids were used as catalyst for Friedel-Crafts alkylation of benzene and 1-dodecene. The turnovers of l-dodecene were higher than 99%. Monoalkylbenzene selectivity was 98%, while the 2-substituent product selectivity was 45%.
基金supported by the National Key R&D Program of China(2018YFB1501600)the National Natural Science Foundation of China(21572212,51821006,51961135104)+2 种基金the Major Science and Technology Projects of Anhui Province(18030701157)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA21060101)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01N092)~~
文摘The conversion of hemicellulose-derived xylose to furfuryl alcohol is a practical procedure for producing value-added chemicals from biomass.In this study,a bifunctional Cu/SBA-15-SO3 H catalyst was employed for the one-pot catalytic conversion of xylose to furfuryl alcohol with a yield of up to 62.6% at the optimized conditions of 140℃,4 MPa,and for 6 h in a biphasic water/n-butanol solvent.A high reaction temperature resulted in further hydrogenation to 2-methyl furan,while a high hydrogen pressure led to a side hydrogenation reaction to xylitol.The biphasic solvent allowed xylose solvation as well as furfuryl product extraction.The acidic-SO3 H sites and Cu sites co-existed,maintained a balance,and cooperatively catalyzed the cascade conversion.Excessive acidic sites and large pores could promote the xylose conversion,although a low furfuryl alcohol yield was obtained.This catalytic system could be potentially applied to the one-pot synthesis of furfuryl alcohol from hemicellulose-derived xylose.
基金the University of Guilan Research Council for the partial support
文摘In this study, 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHS) is used as an efficient and reusable ionic liquid for the green, mild, and efficient synthesis of xanthenes under solvent-free conditions. Simple and easy work-up, low cost, green process, short reaction times and excellent yields of the products are the advantages of this procedure. Further, the catalyst can be recycled and reused at least for four times without a noticeably decrease in its catalytic activity.
文摘An efficient and easy method for one-pot three-component synthesis of l,3-disubstituted-3H-benzo[f]chromenes by the condensation of naphtol,aromatic aldehyde derivatives and phenylacetylene in the presence of ferric hydrogensulfate[Fe(HSO4)3], has been described.The catalyst displayed high activity which afforded the corresponding 1,3-disubstituted-3H-benzo[f]chromenes in satisfying yields.Alkyl-substituted phenols were examined and the corresponding benzopyran derivatives were synthesized in moderate yields.Heterogeneous nature of the using catalyst made it reusable for further chemical reactions.
基金Project(207759096) supported by the National Natural Science Foundation of ChinaProject(20080440696) supported by the China Postdoctoral Science Foundation
文摘Chloropropyl-functionalized mesoporous MCM-41(MCM-41-(CH2)3Cl) was synthesized in alkaline medium by the microwave radiation one-pot method, using cetyltrimethy-lammoniumbromide (CTAB) as novel template, tetraethoxysilane (TEOS) as silica source, and chloropropyltriethoxysilane (C1PTES) as the coupling agent. The microstructure of MCM-41-(CH2)3Cl was characterized by the means of X-ray diffraction (XRD), nitrogen absorption-desorption, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that a successful synthesis of MCM-41-(CH2)3Cl with well structure is obtained. The optimal microwave power is 120 W and the best microwave time is 50 rain. The dosage of chloropropyltriethoxysilane on the structure of chloropropyl-functionalzed MCM-41 was also investigated. It is found that the chloropropyltriethoxysilane volume between 0.8 mL and 1.6 mL is favorable for the formation of highly ordered MCM-41-(CH2)3Cl mesostructure.
基金We want to express our thanks to the National Natural Science Foundation of China for financial support.(Grant No.20102004)
文摘An improved method for the large-scale preparation of 4,6-dihydroxyisophthalic acid and 2,3-dihydroxyterephthalic acid has been developed.Compared to the previous procedures,this new process-requires much lower CO2 pressure of 0.3 Mpa and shorter reaction time.thus providing a convenient access for large-scale synthesis.The yield is high (93% and 65%,respectively), and the oxidation of phenol is nearly inhibited,neither decolorization nor further chromatographic purification is required.
文摘2,4,5-Triarylimidazoles could be obtained in excellent yields by the one-pot three-component condensation of benzil/benzoin, aldehydes and ammonium acetate in the presence of catalytic amount of the inexpensive, readily available and non-toxic ceric (IV) ammonium nitrate (CAN) in aqueous media under ultrasound at room temperature. In this reaction the products were obtained in short reaction time and easy operation under mild conditions.
基金the Key Program of Science Technology Department of Zhejiang Province(No.2018C03037)the Scientific Research Fund of Nanjing Institute of Technology(No.YKJ2019111)。
文摘Series of Fe/Cu-SSZ-13 catalysts with different Fe loading content were synthesized by simple one-pot strategy.The obtained catalysts were subjected to selective catalytic reduction(SCR)of NO x with NH 3 and were characterized by various techniques.The results show that Fe 0.63/Cu 1.50-SSZ-13 catalyst with proper Fe content exhibits excellent catalytic activity with widest operation temperature window from 160 to 580℃,excellent hydrothermal stability as well as good resistance to sulfur poisoning when compared with Cu-SSZ-13,signifying its great potential for practical applications.Further characterizations reveal that the synthesized Fe/Cu-SSZ-13 catalysts present typical chabazite(CHA)structure with good crystallinity,while isolated Cu^2+and monomeric Fe 3+are revealed as the predominant copper and iron species.At low temperatures,isolated Cu^2+species act as primary active sites for SCR reaction,while monomeric Fe^3+species provide sufficient active sites for sustain the SCR activity at high temperature.Moreover,Fe over doping would lead to the damage of zeolite structure,destruction of isolated Cu^2+site,as well as the formation of highly oxidizing Fe2O3,thus causing deterioration of catalytic performances.
基金financially supported by the National Natural Science Foundation of China (No. 21244006)Beijing Natural Science Foundation (No. 2182056)
文摘A simple one-pot non-isocyanate route for synthesizing thermoplastic polyureas is presented. In situ urethanization was conducted from the ring-opening reaction of ethylene carbonate with poly(propylene glycol) bis(2-aminopropyl ether) and hexanediamine,m-xylylenediamine, or diethylene glycol bis(3-aminopropyl) ether at 100 °C for 6 h under normal pressure. Melt transurethane polycondensation was successively conducted at 170 °C under a reduced pressure of 399 Pa for different time periods. A series of nonisocyanate thermoplastic polyureas(NI-TPUreas) were prepared. The NI-TPUreas were characterized by gel permeation chromatography,FTIR, 1 H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy,and tensile test. NI-TPUreas exhibited Mn of up to 1.67 × 104 g/mol, initial decomposition temperature over 290 °C, and tensile strength of up to 32 MPa. Several crystallizable NI-TPUreas exhibited Tm exceeding 98 °C. NI-TPUreas with good thermal and mechanical properties were prepared through a green and simple one-pot non-isocyanate route.