期刊文献+
共找到1,023篇文章
< 1 2 52 >
每页显示 20 50 100
A variational quantum algorithm for the Poisson equation based on the banded Toeplitz systems
1
作者 Xiaoqi Liu Yuedi Qu +1 位作者 Ming Li Shu-Qian Shen 《Communications in Theoretical Physics》 2025年第4期23-33,共11页
To solve the Poisson equation it is usually possible to discretize it into solving the corresponding linear system Ax=b.Variational quantum algorithms(VQAs)for the discretized Poisson equation have been studied before... To solve the Poisson equation it is usually possible to discretize it into solving the corresponding linear system Ax=b.Variational quantum algorithms(VQAs)for the discretized Poisson equation have been studied before.We present a VQA based on the banded Toeplitz systems for solving the Poisson equation with respect to the structural features of matrix A.In detail,we decompose the matrices A and A^(2)into a linear combination of the corresponding banded Toeplitz matrix and sparse matrices with only a few non-zero elements.For the one-dimensional Poisson equation with different boundary conditions and the d-dimensional Poisson equation with Dirichlet boundary conditions,the number of decomposition terms is less than that reported in[Phys.Rev.A 2023108,032418].Based on the decomposition of the matrix,we design quantum circuits that efficiently evaluate the cost function.Additionally,numerical simulation verifies the feasibility of the proposed algorithm.Finally,the VQAs for linear systems of equations and matrix-vector multiplications with the K-banded Toeplitz matrix T_(n)^(K)are given,where T_(n)^(K)∈R^(n×n)and K∈O(ploylogn). 展开更多
关键词 variational quantum algorithm poisson equation quantum circuit
原文传递
Numerical Investigations on the Resonance Errors of Multiscale Discontinuous Galerkin Methods for One-Dimensional Stationary Schrödinger Equation
2
作者 Bo Dong Wei Wang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期311-324,共14页
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al... In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers. 展开更多
关键词 Discontinuous Galerkin(DG)method Multiscale method Resonance errors one-dimensional Schrödinger equation
在线阅读 下载PDF
ASYMPTOTIC BEHAVIOR NEAR THE BOUNDARY OF A LARGE SOLUTION TO SEMILINEAR POISSON EQUATION WITH DOUBLE-POWER NONLINEARITY
3
作者 Kazuhiro TAKIMOTO Yuxiao ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第6期2083-2098,共16页
We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavio... We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavior of a solution u near the boundary OD up to the third or higher term. 展开更多
关键词 large solution semilinear poisson equation double-power nonlinearity ASYMPTOTICBEHAVIOR
在线阅读 下载PDF
The Method of Polynomial Particular Solutions for Solving Nonlinear Poisson-Type Equations
4
作者 Zhile Jia Yanhua Cao Xiaoran Wu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期155-165,共11页
In this paper,the method of polynomial particular solutions is used to solve nonlinear Poisson-type partial differential equations in one,two,and three dimensions.The condition number of the coefficient matrix is redu... In this paper,the method of polynomial particular solutions is used to solve nonlinear Poisson-type partial differential equations in one,two,and three dimensions.The condition number of the coefficient matrix is reduced through the implementation of multiple scale technique,ultimately yielding a stable numerical solution.The methodological process can be divided into two main parts:first,identifying the corresponding polynomial particular solutions for the linear differential operator terms in the governing equations,and second,employing these polynomial particular solutions as basis function to iteratively solve the remaining nonlinear terms within the governing equations.Additionally,we investigate the potential improvement in numerical accuracy for equations with singularities in the analytical solution by shifting the computational domain a certain distance.Numerical experiments are conducted to assess both the accuracy and stability of the proposed method.A comparison of the obtained results with those produced by other numerical methods demonstrates the accuracy,stability,and efficiency of the proposed method in handling nonlinear Poisson-type partial differential equations. 展开更多
关键词 Nonlinear equation SINGULARITY Polynomial particular solutions poisson type
原文传递
Helmholtz decomposition with a scalar Poisson equation in elastic anisotropic media
5
作者 Xin-Yu Fang Gang Yao +3 位作者 Qing-Qing Zheng Ping-Min Zhang Di Wu Feng-Lin Niu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1597-1610,共14页
P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation ca... P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly. 展开更多
关键词 Anisotropic media Scalar anisotropic poisson equation Improved elastic wavefield decomposition
原文传递
Implementation of the Integrated Green’s Function Method for 3D Poisson’s Equation in a Large Aspect Ratio Computational Domain
6
作者 Ji Qiang Chad Mitchell +1 位作者 Remi Lehe Arianna Formenti 《Journal of Software Engineering and Applications》 2024年第9期740-749,共10页
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ... The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions. 展开更多
关键词 Green’s Function poisson equation Particle Accelerator
在线阅读 下载PDF
STABILITY OF VISCOUS SHOCK WAVES FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH DENSITY-DEPENDENT VISCOSITY 被引量:3
7
作者 何躏 唐少君 王涛 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期34-48,共15页
We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of th... We study the large-time behavior toward viscous shock waves to the Cauchy problem of the one-dimensional compressible isentropic Navier-Stokes equations with density- dependent viscosity. The nonlinear stability of the viscous shock waves is shown for certain class of large initial perturbation with integral zero which can allow the initial density to have large oscillation. Our analysis relies upon the technique developed by Kanel~ and the continuation argument. 展开更多
关键词 viscous shock waves density-dependent viscosity one-dimensional compress-ible Navier-Stokes equations nonlinear stability large density oscillation
在线阅读 下载PDF
One-dimensional dynamic equations of a piezoelectric semiconductor beam with a rectangular cross section and their application in static and dynamic characteristic analysis 被引量:2
8
作者 Peng LI Feng JIN Jianxun MA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第5期685-702,共18页
Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. The... Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design. 展开更多
关键词 piezoelectric semiconductor beam reduced one-dimensional (1D) equation double power series expansion technique stress relaxation initial carrier density
在线阅读 下载PDF
NONLINEAR STABILITY OF VISCOUS SHOCK WAVES FOR ONE-DIMENSIONAL NONISENTROPIC COMPRESSIBLE NAVIER–STOKES EQUATIONS WITH A CLASS OF LARGE INITIAL PERTURBATION 被引量:1
9
作者 Shaojun TANG Lan ZHANG +2 位作者 School of Mathematics and Statistics Wuhan University 《Acta Mathematica Scientia》 SCIE CSCD 2018年第3期973-1000,共28页
We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous... We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small.The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space. 展开更多
关键词 one-dimensional nonisentropic compressible Navier–Stokes equations viscous shock waves nonlinear stability large initial perturbation
在线阅读 下载PDF
Potential Symmetries, One-Dimensional Optimal System and Invariant Solutions of the Coupled Burgers’ Equations
10
作者 Yuexing Bai Sudao Bilige Temuer Chaolu 《Journal of Applied Mathematics and Physics》 2018年第9期1825-1839,共15页
In this paper, we discuss one-dimensional optimal system and the invariant solutions of Coupled Burgers’ equations. By using Wu-differential characteristic set algorithm with the aid of Mathematica software, the clas... In this paper, we discuss one-dimensional optimal system and the invariant solutions of Coupled Burgers’ equations. By using Wu-differential characteristic set algorithm with the aid of Mathematica software, the classical symmetries of the Coupled Burgers’ equations are calculated, and the one-dimensional optimal system of Lie algebra is constructed. And we obtain the invariant solution of the Coupled Burgers’ equations corresponding to one element in one dimensional optimal system by using the invariant method. The results generalize the exact solutions of the Coupled Burgers’ equations. 展开更多
关键词 Potential SYMMETRY one-dimensional Optimal System INVARIANT Solution COUPLED Burgers’ equations
在线阅读 下载PDF
LOCAL ONE-DIMENSIONAL ASE-I SCHEME FOR 2D DIFFUSION EQUATION
11
作者 LIU XIAO-YU and ZHANG BAO-LIN(Department of Applied Mathemattes, Tsinghua Unive rsiap Beijing, China Laboratory Of Commutational Physics, IAPCM P.O. Box 8009, Beliing, China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第Z1期515-521,共7页
A local alternating segment explicit - implicit method for the solution of 2D diffusion equations is presented in this paper .The method is unconditionally stable and has the obvious property of parallelism. Some nume... A local alternating segment explicit - implicit method for the solution of 2D diffusion equations is presented in this paper .The method is unconditionally stable and has the obvious property of parallelism. Some numerical experiments show the method is not only simple but also more accurate. 展开更多
关键词 ASE LOCAL one-dimensional ASE-I SCHEME FOR 2D DIFFUSION equation
在线阅读 下载PDF
Dynamical Soliton Wave Structures of One-Dimensional Lie Subalgebras via Group-Invariant Solutions of a Higher-Dimensional Soliton Equation with Various Applications in Ocean Physics and Mechatronics Engineering
12
作者 Oke Davies Adeyemo Chaudry Masood Khalique 《Communications on Applied Mathematics and Computation》 2022年第4期1531-1582,共52页
Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,wi... Having realized various significant roles that higher-dimensional nonlinear partial differ-ential equations(NLPDEs)play in engineering,we analytically investigate in this paper,a higher-dimensional soliton equation,with applications particularly in ocean physics and mechatronics(electrical electronics and mechanical)engineering.Infinitesimal generators of Lie point symmetries of the equation are computed using Lie group analysis of differen-tial equations.In addition,we construct commutation as well as Lie adjoint representation tables for the nine-dimensional Lie algebra achieved.Further,a one-dimensional optimal system of Lie subalgebras is also presented for the soliton equation.This consequently enables us to generate abundant group-invariant solutions through the reduction of the understudy equation into various ordinary differential equations(ODEs).On solving the achieved nonlinear differential equations,we secure various solitonic solutions.In conse-quence,these solutions containing diverse mathematical functions furnish copious shapes of dynamical wave structures,ranging from periodic,kink and kink-shaped nanopteron,soliton(bright and dark)to breather waves with extensive wave collisions depicted.We physically interpreted the resulting soliton solutions by imploring graphical depictions in three dimensions,two dimensions and density plots.Moreover,the gained group-invariant solutions involved several arbitrary functions,thus exhibiting rich physical structures.We also implore the power series technique to solve part of the complicated differential equa-tions and give valid comments on their results.Later,we outline some applications of our results in ocean physics and mechatronics engineering. 展开更多
关键词 Higher-dimensional soliton equation Lie group analysis one-dimensional optimal system of Lie subalgebras Exact soliton solutions Conserved currents
在线阅读 下载PDF
Alternating Group Explicit Iterative Methods for One-Dimensional Advection-Diffusion Equation
13
作者 Ning Chen Haiming Gu 《American Journal of Computational Mathematics》 2015年第3期274-282,共9页
The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE)... The finite difference method such as alternating group iterative methods is useful in numerical method for evolutionary equations and this is the standard approach taken in this paper. Alternating group explicit (AGE) iterative methods for one-dimensional convection diffusion equations problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are taken. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show that the behavior of the method with emphasis on treatment of boundary conditions is valuable. 展开更多
关键词 one-dimensional ADVECTION-DIFFUSION equations ALTERNATING Group EXPLICIT ITERATIVE Methods Stability Convergence Finite Difference Method
在线阅读 下载PDF
A Numerical Study of One-Dimensional Hyperbolic Telegraph Equation
14
作者 Shaheed N. Huseen 《Journal of Mathematics and System Science》 2017年第2期62-72,共11页
In this paper, an approximate solution for the one-dimensional hyperbolic telegraph equation by using the q-homotopy analysis method (q-HAM) is proposed.The results shows that the convergence of the q- homotopy anal... In this paper, an approximate solution for the one-dimensional hyperbolic telegraph equation by using the q-homotopy analysis method (q-HAM) is proposed.The results shows that the convergence of the q- homotopy analysis method is more accurate than the convergence of the homotopy analysis method (HAM). 展开更多
关键词 q-Homotopy analysis method one-dimensional hyperbolic telegraph equation.
在线阅读 下载PDF
约束Herglotz方程的代数结构与非保守系统的Poisson积分理论
15
作者 张毅 王文静 《力学学报》 北大核心 2025年第6期1469-1479,共11页
无论完整或非完整约束系统,如果存在非保守力,则这些系统的方程一般不具有Lie代数结构,从而经典Poisson积分理论只能部分地应用于这些系统的积分问题.通过Herglotz原理可导出非保守系统的一类动力学方程,即Herglotz方程.研究Herglotz方... 无论完整或非完整约束系统,如果存在非保守力,则这些系统的方程一般不具有Lie代数结构,从而经典Poisson积分理论只能部分地应用于这些系统的积分问题.通过Herglotz原理可导出非保守系统的一类动力学方程,即Herglotz方程.研究Herglotz方程的代数结构,进而建立其Poisson积分理论,对于深入探寻非保守系统的动力学特性具有重要意义.文章研究Herglotz方程的代数结构,进而建立非保守系统的Poisson理论,包括完整和非完整情形.首先,针对完整非保守系统,建立其Herglotz方程,引入积分因子将方程化为逆变代数形式,证明其具有Lie代数结构,从而Poisson理论可全部地应用于该系统.其次,针对非完整非保守系统,建立其约束Herglotz方程,利用积分因子将方程化为部分正则的逆变代数形式,证明约束Herglotz方程具有Lie容许代数结构,进而建立非完整非保守系统的Poisson理论.若非完整非保守系统实现自由运动,则约束Herglotz方程具有Lie代数结构,Poisson理论仍可全部地应用于该系统.文中以某非线性方程系统,受均匀和各向同性瑞利耗散力作用的在粗糙水平面上作纯滚动的圆球,以及受黏性阻尼的Appell-Hamel问题为例,分析了约束Herglotz方程的代数结构并演示所述Poisson理论的应用. 展开更多
关键词 非保守系统 约束Herglotz 方程 代数结构 poisson 理论
在线阅读 下载PDF
Poisson theory of generalized Bikhoff equations 被引量:4
16
作者 尚玫 梅凤翔 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第8期3155-3157,共3页
This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a n... This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral. 展开更多
关键词 generalized Birkhoff equations poisson theory INTEGRALS
原文传递
Approximate Controllability of Second-Order Neutral Stochastic Differential Equations with Infinite Delay and Poisson Jumps 被引量:4
17
作者 PALANISAMY Muthukumar CHINNATHAMBI Rajivganthi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1033-1048,共16页
The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the po... The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory. 展开更多
关键词 Approximate controllability Hilbert space poisson jumps second-order neutral stochas-tic differential equations semigroup theory.
在线阅读 下载PDF
The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method 被引量:2
18
作者 Serigne Bira Gueye 《Journal of Electromagnetic Analysis and Applications》 2014年第10期303-308,共6页
A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. T... A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. This is the first time that the inverse of this remarkable matrix is determined directly and exactly. Thus, solving 1D Poisson equation becomes very accurate and extremely fast. This method is a very important tool for physics and engineering where the Poisson equation appears very often in the description of certain phenomena. 展开更多
关键词 1D poisson equation Finite Difference Method TRIDIAGONAL Matrix INVERSION Thomas Algorithm GAUSSIAN ELIMINATION Potential Problem
在线阅读 下载PDF
MULTIPLE STATIONARY SOLUTIONS OF EULER-POISSON EQUATIONS FOR NON-ISENTROPIC GASEOUS STARS 被引量:8
19
作者 邓引斌 谢华朝 《Acta Mathematica Scientia》 SCIE CSCD 2010年第6期2077-2088,共12页
The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for... The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system. 展开更多
关键词 Euler-poisson equations non-isentropic stationary solutions
在线阅读 下载PDF
An Efficient Direct Method to Solve the Three Dimensional Poisson’s Equation 被引量:2
20
作者 Alemayehu Shiferaw Ramesh Chand Mittal 《American Journal of Computational Mathematics》 2011年第4期285-293,共9页
In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is appr... In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is approximated by 19-points and 27-points fourth order finite difference approximation schemes and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results. It is shown that 19-point formula produces comparable results with 27-point formula, though computational efforts are more in 27-point formula. 展开更多
关键词 poisson’s equation Finite DIFFERENCE METHOD Tri-diagonal Matrix Hockney’s METHOD Thomas Algorithm
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部