Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is...Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional(1D)-TM_(6)Te_(6) nanowires to form TM_(6)Te_(6)@CNT-(16,0) 1D van der Waals heterostructures(1D-vd WHs). The systematic first-principles studies on the electronic properties of 1D-vd WHs show that N-type doping CNTs can be formed by charge transfer from TM_(6)Te_(6) nanowires to CNTs, without introducing additional carrier scattering.Particularly, contribution from both T M(e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp^(3) hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.展开更多
In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical ...In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical model is proposed,resulting in coupled governing integral equations that account for interfacial normal and shear stresses.To numerically solve these integral equations,an expansion method using orthogonal Chebyshev polynomials is employed.The results provide insights into the interfacial stresses,axial force,as well as axial and vertical deformations of the PQC film.Additionally,fracture criteria,including stress intensity factors,mode angles,and the J-integral,are evaluated.The solution is compared with the membrane theory,neglecting the normal stress and bending deformation.Finally,the effects of stiffness and aspect ratio on the PQC film are thoroughly discussed.This study serves as a valuable guide for controlling the mechanical response and conducting safety assessments of PQC film systems.展开更多
1-Isoquinolin-1(2H)-one skeleton exists widely in natural products,pharmaceuticals and materials.We disclose here a fluorine effect and catalyst cooperatively induced regioselective or regiospecific 3,4-functionalizat...1-Isoquinolin-1(2H)-one skeleton exists widely in natural products,pharmaceuticals and materials.We disclose here a fluorine effect and catalyst cooperatively induced regioselective or regiospecific 3,4-functionalization of unsymmetric 2-CF_(3)-1,3-enynes.The presence of trifluoromethyl group is determinable for the regioselectivity.When the CF_(3) group was replaced with the methyl or amide group,the regioselectivity decreased to a ratio of 1.3:1 or 1:1.7,respectively.For alkyl substitutedβ-CF_(3)-1,3-enynes,a regiospecificity was obtained.This strategy features excellent regioselectivity,broad substrate scope and high functional group tolerance.Mechanistic studies showed that C–H bond activation is the rate-limiting step.展开更多
This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy pro...This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.展开更多
The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the ...The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.展开更多
This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Ra...This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Raymond (1965) that the decrease in permeability is proportional to the decrease in compressibility during the consolidation process of the soil and that the distribution of initial effective stress is constant with depth the solution obtained, some diagrams are prepared and the It is verified by the existing analytical solutions in special cases. Using telex ant consolidation behavior is investigated.展开更多
One-dimensional(1D)Pt-based electrocatalysts demonstrate outstanding catalytic activities and stability toward the oxygen reduction reaction(ORR).Advances in three-dimensional(3D)ordered electrodes based on 1D Pt-base...One-dimensional(1D)Pt-based electrocatalysts demonstrate outstanding catalytic activities and stability toward the oxygen reduction reaction(ORR).Advances in three-dimensional(3D)ordered electrodes based on 1D Pt-based nanostructure arrays have revealed great potential for developing highperformance proton exchange membrane fuel cells(PEMFCs),in particular for addressing the mass transfer and durability challenges of Pt/C nanoparticle electrodes.This paper reviews recent progress in the field,with a focus on the 3D ordered electrodes based on self-standing Pt nanowire arrays.Nanostructured thin-film(NSTF)catalysts are discussed along with electrodes made from Pt-based nanoparticles deposited on arrays of polymer nanowires,and carbon and TiO2 nanotubes.Achievements on electrodes from Pt-based nanotube arrays are also reviewed.The importance of size,surface properties,and the distribution control of 1D catalyst nanostructures is indicated.Finally,challenges and future development opportunities are addressed regarding increasing electrochemical surface area(ECSA)and quantifying oxygen mass transport resistance for 1D nanostructure array electrodes.展开更多
The explicit expression of Eshelby tensors for one-dimensional(1D) hexagonal quasicrystal composites is presented by using Green’s function method. The closed forms of Eshelby tensors in the special cases of spheroid...The explicit expression of Eshelby tensors for one-dimensional(1D) hexagonal quasicrystal composites is presented by using Green’s function method. The closed forms of Eshelby tensors in the special cases of spheroid, elliptic cylinder, ribbon-like,penny-shaped, and rod-shaped inclusions embedded in 1 D hexagonal quasicrystal matrices are given. As an application of Eshelby tensors, the analytical expressions for the effective properties of the 1 D hexagonal quasicrystal composites are derived based on the Mori-Tanaka method. The effects of the volume fraction of the inclusion on the elastic properties of the composite materials are discussed.展开更多
Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. The...Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.展开更多
Grain crushing plays an important role in one-dimensional (1D) compression and creep behaviors of granular materials under high stress. It is clear that the macro-properties of granular materials are closely related t...Grain crushing plays an important role in one-dimensional (1D) compression and creep behaviors of granular materials under high stress. It is clear that the macro-properties of granular materials are closely related to the micro-fracture properties of grains in 1D compression and creep tests. In this paper, a series of 1D compression and creep tests were performed on Ottawa sand to investigate the deformation and grain crushing properties of granular materials, and it shows that the void ratio is correlated to the grain crushing amount (the quantity of crushed grains) for granular materials subjected to grain crushing. The test results, combining with the existing test data related to grain crushing of granular materials, were used to verify the relation. Moreover, the implications of these relations on the yield of granular material, and the equivalent effect of stress and time in changing soil fabric are presented.展开更多
Two-dimensional/one-dimensional(2D/1D)heterostructures as a new type of heterostructure have been studied for their unusual properties and promising applications in electronic and optoelectronic devices.However,the st...Two-dimensional/one-dimensional(2D/1D)heterostructures as a new type of heterostructure have been studied for their unusual properties and promising applications in electronic and optoelectronic devices.However,the studies of 2D/1D heterostructures are mainly focused on vertical heterostructures,such as MoS_(2) nanosheet-carbon nanotubes.The research on lateral 2D/1D heterostructures with a tunable width of 1D material is still scarce.In this study,bidirectional flow chemical vapor deposition(CVD)was used to accurately control the width of the WS_(2)/WSe2(WS_(2)/MoS_(2))heterostructures by controlling reacting time.WSe2 and MoS_(2) with different widths were epitaxially grown at the edge of WS_(2),respectively.Optical microscope,atomic force microscope(AFM),and scanning electron microscope(SEM)images show the morphology and width of the heterostructures.These results show that the width of the heterostructures can be as low as 10 nm by using this method.The interface of the heterostructure is clear and smooth,which is suitable for application.This report offers a new method for the growth of 1D nanowires,and lays the foundation for the future study of the physical and chemical properties of 2D/1D lateral heterostructures.展开更多
Based on non-Darcian flow caused by non-Newtonian liquid, the theory of one-dimensional (1D) consolidation was modified to consider variation in the total vertical stress with depth and time. The finite difference met...Based on non-Darcian flow caused by non-Newtonian liquid, the theory of one-dimensional (1D) consolidation was modified to consider variation in the total vertical stress with depth and time. The finite difference method (FDM) was adopted to obtain numerical solutions for excess pore water pressure and average degree of consolidation. When non-Darcian flow is degenerated into Darcian flow, a comparison between numerical solutions and analytical solutions was made to verify reliability of finite difference solutions. Finally, taking into account the ramp time-dependent loading, consolidation behaviors with non-Darcian flow under various parameters were analyzed. Thus, a comprehensive analysis of 1D consolidation combined with non-Darcian flow caused by non-Newtonian liquid was conducted in this paper.展开更多
We address the existence of surface solitons at an interface in a defocusing cubic medium with an imprinted one-dimensional (1D) composite Bessel optical lattice. This setting is composed of two Bessel lattices with...We address the existence of surface solitons at an interface in a defocusing cubic medium with an imprinted one-dimensional (1D) composite Bessel optical lattice. This setting is composed of two Bessel lattices with different orders and different modulation depths, separated beside both sides of an interface. Stability analysis and numerical propagation simulations prove that solitons supported by the model are dynamically stable in the entire domain of their existence. The order of lattice determines the shape of soliton, and the amplitude of soliton depends on the lattice modulation depth. The experimental realization of the scheme is also proposed. Our results may provide another effective way of controlling the shapes of surface solitons and thus their evolutions by introducing a new freedom degree.展开更多
Periodic photonic structures can provide rich modulation in propagation of light due to well-defined band structures.Especially near band edges,light localization and the effect of near-zero refractive index have attr...Periodic photonic structures can provide rich modulation in propagation of light due to well-defined band structures.Especially near band edges,light localization and the effect of near-zero refractive index have attracted wide attention.However,the practically fabricated structures can only have finite size,i.e.,limited numbers of periods,leading to changes of the light propagation modulation compared with infinite structures.Here,we study the size effect on light localization and near-zero refractive-index propagation near band edges in one-dimensional periodic structures.Near edges of the band gap,as the structure's size shrinks,the broadening of the band gap and the weakening of the light localization are discovered.When the size is small,an added layer on the surface will perform large modulation in the group velocity.Near the degenerate point with Dirac-like dispersion,the zero-refractive-index effects like the zero-phase difference and near-unity transmittance retain as the size changes,while absolute group velocity fluctuates when the size shrinks.展开更多
By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to a...By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to an elliptical orifice problem with asymmetric cracks in one-dimensional(1D)orthorhombic QCs is obtained.By using the Dugdale-Barenblatt model,the plastic simulation at the crack tip of the elliptical orifice with asymmetric cracks in 1D orthorhombic QCs is performed.Finally,the size of the atomic cohesive force zone is determined precisely,and the size of the atomic cohesive force zone around the crack tip of an elliptical orifice with a single crack or two symmetric cracks is obtained.展开更多
In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact inte...In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.展开更多
The density functional theory method is utilized to verify the electronic structures of SiC nanotubes(SiCNTs) and SiC nanoribbons(SiCNRs) one-dimensional(1D) van der Waals homojunctions(vdWh) under an applied axial st...The density functional theory method is utilized to verify the electronic structures of SiC nanotubes(SiCNTs) and SiC nanoribbons(SiCNRs) one-dimensional(1D) van der Waals homojunctions(vdWh) under an applied axial strain and an external electric field. According to the calculated results, the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-II band alignment and robust electronic structures with different diameters or widths. Furthermore,the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-I band alignment, respectively, in a range of[-0.3,-0.1] V/A and [0.1, 0.3] V/A and change into metal when the electric field intensity is equal to or higher than0.4 V/A. Interestingly, the SiCNTs/SiCNRs 1D vdWhs have robust electronic structures under axial strain. These findings demonstrate theoretically that the SiCNTs/SiCNRs 1D vdWhs can be employed in nanoelectronics devices.展开更多
In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape i...In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.展开更多
This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performe...This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performed on saturated expansive soil specimens with varying compaction conditions and soil structures under different stress states.Experimental results demonstrate that the specimens expand during freezing and contract during thawing.All specimens converge to the same residual void ratio after seven FT cycles,irrespective of their different initial void ratio,stress state,and soil structure.The compression index of the expansive soil specimens increases with the initial void ratio,whereas their swelling index remains nearly constant.A model extending the disturbed state concept(DSC)is proposed to predict the 1D compression behaviors of FT-impacted soils.The model incorporates a parameter,b,to account for the impacts of FT cycles.Empirical equations have been developed to link the key model parameters(i.e.the normalized yield stress and parameter b)to the soil state parameter(i.e.the normalized void ratio)in order to simplify the prediction approach.The proposed model well predicts the results of the tested expansive soil.In addition,the model’s feasibility for other types of soils,including low-and high-plastic clays,and high-plastic organic soils,has been validated using published data from the literature.The proposed model is simple yet reliable for predicting the compression behaviors of soils subjected to FT cycles.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 92477205)。
文摘Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional(1D)-TM_(6)Te_(6) nanowires to form TM_(6)Te_(6)@CNT-(16,0) 1D van der Waals heterostructures(1D-vd WHs). The systematic first-principles studies on the electronic properties of 1D-vd WHs show that N-type doping CNTs can be formed by charge transfer from TM_(6)Te_(6) nanowires to CNTs, without introducing additional carrier scattering.Particularly, contribution from both T M(e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp^(3) hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.
基金Supported by the National Natural Science Foundation of China (Nos. 11902293 and 12272353)。
文摘In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical model is proposed,resulting in coupled governing integral equations that account for interfacial normal and shear stresses.To numerically solve these integral equations,an expansion method using orthogonal Chebyshev polynomials is employed.The results provide insights into the interfacial stresses,axial force,as well as axial and vertical deformations of the PQC film.Additionally,fracture criteria,including stress intensity factors,mode angles,and the J-integral,are evaluated.The solution is compared with the membrane theory,neglecting the normal stress and bending deformation.Finally,the effects of stiffness and aspect ratio on the PQC film are thoroughly discussed.This study serves as a valuable guide for controlling the mechanical response and conducting safety assessments of PQC film systems.
基金supported by National Natural Science Founda:tion of China(22461002,22308061,22305046)Natural Science Foundation(NSF)of Jiangxi Province(20224BAB213011,20242BAB20110,20224BAB213012)+1 种基金High-Level and Highly Demanded Overseas Talent Programs of Jiangxi Province(20232BCJ25050)Gannan Normal University Start-up Fund(BSJJ202109).
文摘1-Isoquinolin-1(2H)-one skeleton exists widely in natural products,pharmaceuticals and materials.We disclose here a fluorine effect and catalyst cooperatively induced regioselective or regiospecific 3,4-functionalization of unsymmetric 2-CF_(3)-1,3-enynes.The presence of trifluoromethyl group is determinable for the regioselectivity.When the CF_(3) group was replaced with the methyl or amide group,the regioselectivity decreased to a ratio of 1.3:1 or 1:1.7,respectively.For alkyl substitutedβ-CF_(3)-1,3-enynes,a regiospecificity was obtained.This strategy features excellent regioselectivity,broad substrate scope and high functional group tolerance.Mechanistic studies showed that C–H bond activation is the rate-limiting step.
基金supported by the National Natural Science Foundation of China(Nos.51378293 and 51078199)
文摘This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.
基金Project supported by the National Natural Science Foundation of China(Nos.41630633 and11672172)
文摘The semi-analytical solutions to Fredlund and Hasan's one-dimensional (1D) consolidation for unsaturated soils with a semi-permeable drainage boundary are pre- seated. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations (PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pres- sures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are con- ducted on the pore-air and pore-water pressures at different ratios (the air permeability coefficient to the water permeability coefficient) and depths.
基金Projects supported by the National Research Foundation for theDoctoral Program of Higher Education of China (No. 20030335027)and the Natural Science Foundation of Zhejiang Province (No.Y104463), China
文摘This paper presents an analytical solution for one-dimensional consolidation of soft soil under some common types of cyclic loading such as trapezoidal cyclic loading, based on the assumptions proposed by Davis and Raymond (1965) that the decrease in permeability is proportional to the decrease in compressibility during the consolidation process of the soil and that the distribution of initial effective stress is constant with depth the solution obtained, some diagrams are prepared and the It is verified by the existing analytical solutions in special cases. Using telex ant consolidation behavior is investigated.
基金The author would like to acknowledge the support from the Engineering and Physical Sciences Research Council(EPSRC)(EP/L015749/1).
文摘One-dimensional(1D)Pt-based electrocatalysts demonstrate outstanding catalytic activities and stability toward the oxygen reduction reaction(ORR).Advances in three-dimensional(3D)ordered electrodes based on 1D Pt-based nanostructure arrays have revealed great potential for developing highperformance proton exchange membrane fuel cells(PEMFCs),in particular for addressing the mass transfer and durability challenges of Pt/C nanoparticle electrodes.This paper reviews recent progress in the field,with a focus on the 3D ordered electrodes based on self-standing Pt nanowire arrays.Nanostructured thin-film(NSTF)catalysts are discussed along with electrodes made from Pt-based nanoparticles deposited on arrays of polymer nanowires,and carbon and TiO2 nanotubes.Achievements on electrodes from Pt-based nanotube arrays are also reviewed.The importance of size,surface properties,and the distribution control of 1D catalyst nanostructures is indicated.Finally,challenges and future development opportunities are addressed regarding increasing electrochemical surface area(ECSA)and quantifying oxygen mass transport resistance for 1D nanostructure array electrodes.
基金the National Natural Science Foundation of China(Nos.11962026,12002175,12162027,and 62161045)the Inner Mongolia Natural Science Foundation of China(No.2020MS01018)。
文摘The explicit expression of Eshelby tensors for one-dimensional(1D) hexagonal quasicrystal composites is presented by using Green’s function method. The closed forms of Eshelby tensors in the special cases of spheroid, elliptic cylinder, ribbon-like,penny-shaped, and rod-shaped inclusions embedded in 1 D hexagonal quasicrystal matrices are given. As an application of Eshelby tensors, the analytical expressions for the effective properties of the 1 D hexagonal quasicrystal composites are derived based on the Mori-Tanaka method. The effects of the volume fraction of the inclusion on the elastic properties of the composite materials are discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.11672223,11402187,and 51178390)the China Postdoctoral Science Foundation(No.2014M560762)the Fundamental Research Funds for the Central Universities of China(No.xjj2015131)
文摘Within the framework of continuum mechanics, the double power series ex- pansion technique is proposed, and a series of reduced one-dimensional (1D) equations for a piezoelectric semiconductor beam are obtained. These derived equations are universal, in which extension, flexure, and shear deformations are all included, and can be degen- erated to a number of special cases, e.g., extensional motion, coupled extensional and flexural motion with shear deformations, and elementary flexural motion without shear deformations. As a typical application, the extensional motion of a ZnO beam is analyzed sequentially. It is revealed that semi-conduction has a great effect on the performance of the piezoelectric semiconductor beam, including static deformations and dynamic be- haviors. A larger initial carrier density will evidently lead to a lower resonant frequency and a smaller displacement response, which is a little similar to the dissipative effect. Both the derived approximate equations and the corresponding qualitative analysis are general and widely applicable, which can clearly interpret the inner physical mechanism of the semiconductor in the piezoelectrics and provide theoretical guidance for further experimental design.
基金Supported by Natural Sciences and Engineering Research Council of Canada, Alberta Energy Research Institute and the Department of Civil Engineering at University of Calgary
文摘Grain crushing plays an important role in one-dimensional (1D) compression and creep behaviors of granular materials under high stress. It is clear that the macro-properties of granular materials are closely related to the micro-fracture properties of grains in 1D compression and creep tests. In this paper, a series of 1D compression and creep tests were performed on Ottawa sand to investigate the deformation and grain crushing properties of granular materials, and it shows that the void ratio is correlated to the grain crushing amount (the quantity of crushed grains) for granular materials subjected to grain crushing. The test results, combining with the existing test data related to grain crushing of granular materials, were used to verify the relation. Moreover, the implications of these relations on the yield of granular material, and the equivalent effect of stress and time in changing soil fabric are presented.
基金the support from National Natural Science Foundation of China(No.51872086)the Hunan Key Laboratory of Two-Dimensional Materials(Grant No.2018TP1010)the Innovative Research Groups of Hunan Province(Grant No.2020JJ1001)for the work conducted at Hunan University.
文摘Two-dimensional/one-dimensional(2D/1D)heterostructures as a new type of heterostructure have been studied for their unusual properties and promising applications in electronic and optoelectronic devices.However,the studies of 2D/1D heterostructures are mainly focused on vertical heterostructures,such as MoS_(2) nanosheet-carbon nanotubes.The research on lateral 2D/1D heterostructures with a tunable width of 1D material is still scarce.In this study,bidirectional flow chemical vapor deposition(CVD)was used to accurately control the width of the WS_(2)/WSe2(WS_(2)/MoS_(2))heterostructures by controlling reacting time.WSe2 and MoS_(2) with different widths were epitaxially grown at the edge of WS_(2),respectively.Optical microscope,atomic force microscope(AFM),and scanning electron microscope(SEM)images show the morphology and width of the heterostructures.These results show that the width of the heterostructures can be as low as 10 nm by using this method.The interface of the heterostructure is clear and smooth,which is suitable for application.This report offers a new method for the growth of 1D nanowires,and lays the foundation for the future study of the physical and chemical properties of 2D/1D lateral heterostructures.
基金Supported by the National Natural Science Foundation of China (51109092,50878191)
文摘Based on non-Darcian flow caused by non-Newtonian liquid, the theory of one-dimensional (1D) consolidation was modified to consider variation in the total vertical stress with depth and time. The finite difference method (FDM) was adopted to obtain numerical solutions for excess pore water pressure and average degree of consolidation. When non-Darcian flow is degenerated into Darcian flow, a comparison between numerical solutions and analytical solutions was made to verify reliability of finite difference solutions. Finally, taking into account the ramp time-dependent loading, consolidation behaviors with non-Darcian flow under various parameters were analyzed. Thus, a comprehensive analysis of 1D consolidation combined with non-Darcian flow caused by non-Newtonian liquid was conducted in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant No10704067)the Scientific Research Foundation of Education Bureau of Zhejiang Province of China(Grant No20060493)
文摘We address the existence of surface solitons at an interface in a defocusing cubic medium with an imprinted one-dimensional (1D) composite Bessel optical lattice. This setting is composed of two Bessel lattices with different orders and different modulation depths, separated beside both sides of an interface. Stability analysis and numerical propagation simulations prove that solitons supported by the model are dynamically stable in the entire domain of their existence. The order of lattice determines the shape of soliton, and the amplitude of soliton depends on the lattice modulation depth. The experimental realization of the scheme is also proposed. Our results may provide another effective way of controlling the shapes of surface solitons and thus their evolutions by introducing a new freedom degree.
基金the National Key Basic Research Program of China(Grant No.2022YFA1404800)the National Natural Science Foundation of China(Grant Nos.12234007 and 12221004)supported by Science and Technology Commission of Shanghai Municipality,China(Grant Nos.19XD1434600,2019SHZDZX01,19DZ2253000,20501110500,and 21DZ1101500)。
文摘Periodic photonic structures can provide rich modulation in propagation of light due to well-defined band structures.Especially near band edges,light localization and the effect of near-zero refractive index have attracted wide attention.However,the practically fabricated structures can only have finite size,i.e.,limited numbers of periods,leading to changes of the light propagation modulation compared with infinite structures.Here,we study the size effect on light localization and near-zero refractive-index propagation near band edges in one-dimensional periodic structures.Near edges of the band gap,as the structure's size shrinks,the broadening of the band gap and the weakening of the light localization are discovered.When the size is small,an added layer on the surface will perform large modulation in the group velocity.Near the degenerate point with Dirac-like dispersion,the zero-refractive-index effects like the zero-phase difference and near-unity transmittance retain as the size changes,while absolute group velocity fluctuates when the size shrinks.
基金Project supported by the National Natural Science Foundation of China(Nos.12162027 and 11962026)the Natural Science Key Project of Science and Technology Research in Higher Education Institutions of Inner Mongolia Autonomous Region(No.NJZZ22574)。
文摘By means of Muskhelishvili’s method and the technique of generalized conformal mapping,the physical plane problems are transformed into regular mathematical problems in quasicrystals(QCs).The analytical solution to an elliptical orifice problem with asymmetric cracks in one-dimensional(1D)orthorhombic QCs is obtained.By using the Dugdale-Barenblatt model,the plastic simulation at the crack tip of the elliptical orifice with asymmetric cracks in 1D orthorhombic QCs is performed.Finally,the size of the atomic cohesive force zone is determined precisely,and the size of the atomic cohesive force zone around the crack tip of an elliptical orifice with a single crack or two symmetric cracks is obtained.
基金Project supported by the National Natural Science Foundation of China(Nos.11572289,1171407,11702252,and 11902293)the China Postdoctoral Science Foundation(No.2019M652563)。
文摘In this paper,we investigate the interfacial behavior of a thin one-dimensional(1D)hexagonal quasicrystal(QC)film bonded on an elastic substrate subjected to a mismatch strain due to thermal variation.The contact interface is assumed to be nonslipping,with both perfectly bonded and debonded boundary conditions.The Fourier transform technique is adopted to establish the integral equations in terms of interfacial shear stress,which are solved as a linear algebraic system by approximating the unknown phonon interfacial shear stress via the series expansion of the Chebyshev polynomials.The expressions are explicitly obtained for the phonon interfacial shear stress,internal normal stress,and stress intensity factors(SIFs).Finally,based on numerical calculations,we briefly discuss the effects of the material mismatch,the geometry of the QC film,and the debonded length and location on stresses and SIFs.
基金Project supported by the National Natural Science Foundation of China(Grant No.11864011)the Youth Project of Scientific and Technological Research Program of Chongqing Education Commission,China(Grant Nos.KJQN202001207 and KJQN202101204)the Fund from the Educational Commission of Hubei Province,China(Grant No.T201914)。
文摘The density functional theory method is utilized to verify the electronic structures of SiC nanotubes(SiCNTs) and SiC nanoribbons(SiCNRs) one-dimensional(1D) van der Waals homojunctions(vdWh) under an applied axial strain and an external electric field. According to the calculated results, the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-II band alignment and robust electronic structures with different diameters or widths. Furthermore,the SiCNTs/SiCNRs 1D vdWhs are direct semiconductors with a type-I band alignment, respectively, in a range of[-0.3,-0.1] V/A and [0.1, 0.3] V/A and change into metal when the electric field intensity is equal to or higher than0.4 V/A. Interestingly, the SiCNTs/SiCNRs 1D vdWhs have robust electronic structures under axial strain. These findings demonstrate theoretically that the SiCNTs/SiCNRs 1D vdWhs can be employed in nanoelectronics devices.
基金Project supported by the National Natural Science Foundation of China (Nos. 11572289, 1171407,11702252, and 11902293)the China Postdoctoral Science Foundation (No. 2019M652563)。
文摘In this paper, the three-dimensional(3D) interfacial fracture is analyzed in a one-dimensional(1D) hexagonal quasicrystal(QC) coating structure under mechanical loading. A planar interface crack with arbitrary shape is studied by a displacement discontinuity method. Fundamental solutions of interfacial concentrated displacement discontinuities are obtained by the Hankel transform technique, and the corresponding boundary integral-differential equations are constructed with the superposition principle.Green’s functions of constant interfacial displacement discontinuities within a rectangular element are derived, and a boundary element method is proposed for numerical simulation.The singularity of stresses near the crack front is investigated, and the stress intensity factors(SIFs) as well as energy release rates(ERRs) are determined. Finally, relevant influencing factors on the fracture behavior are discussed.
基金support from the Natural Sciences and Engineering Research Council of Canada(NSERC)through the Discovery Grant(Grant No.5808)received in 2019 for his research programsThe third author appreciates the funding from the National Natural Science Foundation of China(Grant No.52378365)Hubei Key Research&Development Program(Grant No.2023BCB112).
文摘This study investigates the volumetric behaviors of various soils during freeze-thaw(FT)cycles and subsequent one-dimensional(1D)compression from experimental and theoretical studies.Experimental studies were performed on saturated expansive soil specimens with varying compaction conditions and soil structures under different stress states.Experimental results demonstrate that the specimens expand during freezing and contract during thawing.All specimens converge to the same residual void ratio after seven FT cycles,irrespective of their different initial void ratio,stress state,and soil structure.The compression index of the expansive soil specimens increases with the initial void ratio,whereas their swelling index remains nearly constant.A model extending the disturbed state concept(DSC)is proposed to predict the 1D compression behaviors of FT-impacted soils.The model incorporates a parameter,b,to account for the impacts of FT cycles.Empirical equations have been developed to link the key model parameters(i.e.the normalized yield stress and parameter b)to the soil state parameter(i.e.the normalized void ratio)in order to simplify the prediction approach.The proposed model well predicts the results of the tested expansive soil.In addition,the model’s feasibility for other types of soils,including low-and high-plastic clays,and high-plastic organic soils,has been validated using published data from the literature.The proposed model is simple yet reliable for predicting the compression behaviors of soils subjected to FT cycles.