期刊文献+
共找到9,337篇文章
< 1 2 250 >
每页显示 20 50 100
基于条件高斯PAC-Bayes的机载CNN分类器安全性评估 被引量:1
1
作者 马赞 白杰 +2 位作者 陈勇 刘瑞华 张艳婷 《航空学报》 北大核心 2025年第4期217-230,共14页
针对机器学习技术的固有不确定输出特性给航空器适航安全性定量评估造成的挑战,在SAE ARP4761标准框架下,基于条件高斯PAC-Bayes泛化理论提出一种面向卷积神经网络(CNN)分类功能的系统安全性评估方法。首先,基于PAC-Bayes理论,通过条件... 针对机器学习技术的固有不确定输出特性给航空器适航安全性定量评估造成的挑战,在SAE ARP4761标准框架下,基于条件高斯PAC-Bayes泛化理论提出一种面向卷积神经网络(CNN)分类功能的系统安全性评估方法。首先,基于PAC-Bayes理论,通过条件高斯分布改进训练方法,优化泛化界,获取CNN模型不确定性量化表示。其次,提出一种基于泛化界置信度的软件不确定性与硬件可靠性融合方法,获取CNN部件的综合失效基础数据,支持整机/系统的定量安全性评估。最后,以基于CNN的全球导航卫星系统干扰信号识别模块装机为案例,表明该方法对适航安全性评估的有效支撑作用,为CNN技术的装机应用提供了必要的适航符合性保证。同时也实验验证基于条件高斯的方法比标准PAC-Bayes及Vapnik-Chervonenkis维都具有更紧的计算边界。 展开更多
关键词 机载cnn分类器 PAC-Bayes SAE ARP4761 条件高斯 适航安全性
原文传递
基于CNN模型的地震数据噪声压制性能对比研究 被引量:1
2
作者 张光德 张怀榜 +3 位作者 赵金泉 尤加春 魏俊廷 杨德宽 《石油物探》 北大核心 2025年第2期232-246,共15页
地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信... 地震噪声的压制是地震勘探中地震数据处理的重要研究内容之一。准确地压制地震噪声和提取地震信号中的有效信息是地震勘探和地震监测的一项关键步骤。传统的地震噪声压制方法存在一些不足之处,如灵活性不足、难以处理复杂噪声、有效信息损失以及依赖人工提取特征等局限性。为克服传统方法的不足,采用时频域变换并结合深度学习方法进行地震噪声压制,并验证其应用效果。通过构建5个神经网络模型(FCN、Unet、CBDNet、SwinUnet以及TransUnet)对经过时频变换的地震信号进行噪声压制。为了定量评估实验方法的去噪性能,引入了峰值信噪比(PSNR)、结构相似性指数(SSIM)和均方根误差(RMSE)3个指标,比较不同方法的噪声压制性能。数值实验结果表明,基于时频变换的卷积神经网络(CNN)方法对常见的地震噪声类型(包括随机噪声、海洋涌浪噪声、陆地面波噪声)具有较好的噪声压制效果,能够提高地震数据的信噪比。而Transformer模块的引入可进一步提高对上述3种常见地震数据噪声类型的压制效果,进一步提升CNN模型的去噪性能。尽管该方法在数值实验中取得了较好的应用效果,但仍有进一步优化的空间可供探索,比如改进网络结构以适应更复杂的地震信号,并探索与其他先进技术结合,以提升地震噪声压制性能。 展开更多
关键词 地震噪声压制 深度学习 卷积神经网络(cnn) 时频变换 TRANSFORMER
在线阅读 下载PDF
基于CNN-LSTM-Attention 组合模型的黄金周旅游客流预测——以大理州为例 被引量:1
3
作者 戢晓峰 郭雅诗 +2 位作者 陈方 黄志文 李武 《干旱区资源与环境》 北大核心 2025年第3期200-208,共9页
黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-... 黄金周旅游客流预测一直是区域旅游管理的重大现实需求,能够为黄金周旅游组织提供更为精准的数据支持。文中基于百度迁徙数据和百度搜索指数数据,以卷积神经网络(CNN)、长短期记忆网络(LSTM)以及注意力机制(Attention)为基准,构建了CNN-LSTM-Attention组合模型,对大理州黄金周日度旅游客流人数进行了预测,并基于SHAP算法进行了影响因素分析。结果显示:1)CNN-LSTM-Attention组合模型的预测精度优于RF模型、SVM模型、CNN模型、LSTM模型和CNN-LSTM模型。2)引入百度搜索指数特征后,模型的均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数(R^(2))表现最优,表明百度搜索指数的加入在一定程度上提升了模型的预测精度。文中所构模型为黄金周旅游客流预测提供了新思路。 展开更多
关键词 客流预测 黄金周 卷积神经网络(cnn) 长短期记忆网络(LSTM) 注意力机制
原文传递
基于Mask R⁃CNN的多类建筑物损伤识别方法 被引量:1
4
作者 杨敬松 王煜鑫 +2 位作者 李智涛 卢泽葳 彭福民 《防灾减灾工程学报》 北大核心 2025年第3期562-570,共9页
地震发生后快速对建筑物损伤进行识别,可以提高灾害损失评估的效率,并为救援提供有效地决策支持。针对因背景干扰带来的重要特征表达能力弱的问题,提出一种基于深度学习框架Mask R‑CNN的多建筑物损伤识别方法。首先,对样本图像进行预处... 地震发生后快速对建筑物损伤进行识别,可以提高灾害损失评估的效率,并为救援提供有效地决策支持。针对因背景干扰带来的重要特征表达能力弱的问题,提出一种基于深度学习框架Mask R‑CNN的多建筑物损伤识别方法。首先,对样本图像进行预处理,克服复杂环境背景因素干扰,并进行多途径扩增,得到用于深度学习的扩增样本数据集。其次,优化特征提取网络,采用嵌入注意力机制模块SE的MobileNetv3网络作为主干网络,增加模型对建筑物损伤空间及语义信息的提取,有效避免背景对模型性能的影响,改进损失函数,避免遗漏类别和类别错分现象,同时引入迁移学习,降低训练成本;最后,采用定性分析和定量评估相结合的手段,多维度评估模型泛化能力和鲁棒性。改进后的Mask R‑CNN模型的平均精度达到了84.34%,相对于原始的Mask R‑CNN模型,精度提高了9.12%。结果表明,改进后的模型在识别含有多种损伤特征和噪声背景的建筑物损伤图像方面表现良好,可以为地震后建筑物的损伤评估提供有效地技术支持。 展开更多
关键词 人工智能 建筑物损伤识别 Mask R‑cnn 实例分割
原文传递
基于DWT-CNN-Informer模型的液压支架压力多步长预测 被引量:1
5
作者 张传伟 张刚强 +1 位作者 路正雄 李林岳 《中国安全生产科学技术》 北大核心 2025年第4期57-63,共7页
为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神... 为了实现液压支架压力多步长精准预测,提出1种基于DWT-CNN-Informer模型的压力多步长预测方法,该方法利用离散小波变换(discrete wavelet transform, DWT)将预处理后的压力时序数据分解为趋势项和周期项频率分量;各频率分量输入卷积神经网络(CNN)模型提取频率特征;提取的频率特征输入Informer编码器,经位置编码和多头概率稀疏自注意力机制捕捉时序变化特征,并结合自注意力蒸馏减少特征冗余;将Informer解码器改为全连接层,直接输出各分量多步长预测结果;重构叠加各分量多步长预测结果得到液压支架压力多步长预测结果。研究结果表明:在预测步长分别为6,12,24时,DWT-CNN-Informer模型相比LSTM、Informer、CNN-Informer模型在平均绝对误差(MAE)、均方根误差(RMSE)、对称平均绝对百分比误差(SMAPE)指标上均表现出更高预测精度。研究结果为液压支架压力精准预测提供有效方法。 展开更多
关键词 液压支架压力 多步长预测 离散小波变换 cnn模型 Informer模型
在线阅读 下载PDF
基于CNN-BiLSTM的ICMPv6 DDoS攻击检测方法
6
作者 王春兰 郭峰 +2 位作者 刘晋州 王明华 韩宝安 《火力与指挥控制》 北大核心 2025年第4期71-78,84,共9页
针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明... 针对ICMPv6网络中DDoS攻击检测问题,提出一种基于CNN-BiLSTM网络的检测算法。通过将带有注意力机制、DropConnect和Dropout混合使用加入到CNN-BiLSTM算法中,防止在训练过程中产生过拟合问题,同时更准确提取数据的特性数据。通过实验表明:提出的算法在多次实验中的检测准确率、误报率与漏报率平均值分别为92.84%、4.49%和10.54%,检测算法泛化性较强,性能优于其他算法,能够有效处理ICMPv6 DDoS攻击检测问题。 展开更多
关键词 分布式拒绝服务攻击 攻击检测 ICMPV6 cnn BiLSTM
在线阅读 下载PDF
改进Faster-R-CNN的输送带表面损伤检测 被引量:2
7
作者 袁媛 赵鹏举 +1 位作者 孟文俊 王航 《机械设计与制造》 北大核心 2025年第3期199-203,共5页
针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入ancho... 针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入anchor原始特征与卷积相融合的背景分类,以加强输送带的损伤特征信息;最后构建输送带表面损伤的数据集进行数据试验,并分别采用VGG-19,ResNet-18骨干网络进行试验对比,结果表明改进的Faster-R-CNN的算法,针对输送带划伤、撕裂和破损的损伤状态均能够有效识别。 展开更多
关键词 输送带 损伤检测 Faster-R-cnn MobileNet
在线阅读 下载PDF
虚拟AP融合CNN模型的自适应RSSI指纹定位方法 被引量:1
8
作者 吴仕勋 黄文鲜 +1 位作者 李敏 徐凯 《计算机应用与软件》 北大核心 2025年第1期72-81,共10页
基于RSSI(Received Signal Strength Indication)位置指纹的Wi-Fi室内定位现已被大量应用于各类基于位置信息的服务中。但指纹定位的精度受到RSSI信号的剧烈波动影响,难以满足高精度位置信息服务的需求。为克服该困难,提出一种结合虚拟A... 基于RSSI(Received Signal Strength Indication)位置指纹的Wi-Fi室内定位现已被大量应用于各类基于位置信息的服务中。但指纹定位的精度受到RSSI信号的剧烈波动影响,难以满足高精度位置信息服务的需求。为克服该困难,提出一种结合虚拟AP技术与高精度CNN(Convolutional Neural Network)判别模型的定位方法。该方法通过距离比定位得到虚拟AP的位置,并将该信息与RSSI融合作为数据增强CNN模型的输入,确定样本的位置。设计实验方案采集实际的用户终端RSSI数据,构建指纹定位的数据集,验证所提出的指纹定位方案的有效性。实验结果表明,在该数据集上,所提出的方法在确定区域时的准确度达到91%,并将95%的定位误差控制在2 m以内。对比现有的定位方案,所提出的方案在定位精度上有显著提升。 展开更多
关键词 接收信号强度指示 指纹定位 卷积神经网络 虚拟AP
在线阅读 下载PDF
赛教协同模式下基于Agent和改进CNN的多源异构网络信息融合技术 被引量:1
9
作者 杨鹏 《自动化与仪器仪表》 2025年第5期21-25,共5页
在教育信息化进程中,赛教协同模式的发展受到多源异构数据整合能力的限制,而数据孤岛问题导致信息资源浪费和决策效率下降。为应对这一挑战,提出了一种融合多Agent系统和改进卷积神经网络的数据融合技术。实验显示,研究所提方法在自建... 在教育信息化进程中,赛教协同模式的发展受到多源异构数据整合能力的限制,而数据孤岛问题导致信息资源浪费和决策效率下降。为应对这一挑战,提出了一种融合多Agent系统和改进卷积神经网络的数据融合技术。实验显示,研究所提方法在自建数据集训练集中的准确率比单一模型分别增加了15.85%、9.20%。研究提出的混合模型平均增益为38.37%,而邓普斯特-谢弗证据理论和粗糙集理论的平均增益仅为12.50%、16.81%。结果表明,构建多Agent系统采集多源异构数据信息,并引入长短期记忆网络对卷积神经网络进行改进从而进行多源异构数据的融合,具有合理性和有效性。研究提出的方法能够提高模型在多源异构数据中的融合效率和融合质量,促进了教育信息化中的赛教协同模式智能化发展。 展开更多
关键词 AGENT cnn LSTM 数据融合 教育信息化 赛教协同
原文传递
基于轻量化Mask R⁃CNN的车型检测算法
10
作者 许超 杨丰熙 +1 位作者 李博 王浩宇 《现代电子技术》 北大核心 2025年第21期127-136,共10页
车型检测对智能交通系统具有重要意义,其为智能交通系统的车辆管理能力提供了有效保障。针对现有算法通常较为复杂,并不能较好地适配于实际应用中的车型检测,文中提出一种基于改进Mask R⁃CNN的轻量化车型检测算法。首先,将特征提取网络... 车型检测对智能交通系统具有重要意义,其为智能交通系统的车辆管理能力提供了有效保障。针对现有算法通常较为复杂,并不能较好地适配于实际应用中的车型检测,文中提出一种基于改进Mask R⁃CNN的轻量化车型检测算法。首先,将特征提取网络替换为FasterNet特征提取网络,在降低算法复杂度的同时提升算法精度;其次,构建基于DO卷积的改进FPN特征融合网络,使算法既降低复杂度又提升精度;最后,将损失函数替换为Smooth L_(1)损失函数,在不改变当前算法复杂度的情况下对算法精度实现了进一步提升。实验结果表明,所提算法兼顾精度与实时性需求,且具有较好的泛化能力,更适配于实际应用中的车型检测。 展开更多
关键词 Mask R⁃cnn 车型检测 主干网络 特征融合 损失函数 轻量化
在线阅读 下载PDF
基于连续小波变换的CNN—SVM农机滚动轴承故障诊断 被引量:3
11
作者 沈伟杰 肖茂华 +1 位作者 宋新民 项腾飞 《中国农机化学报》 北大核心 2025年第4期254-264,共11页
针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承... 针对农用机械滚动轴承故障诊断中轴承振动信号非线性、非平稳特性以及故障特征表征不明显的问题,提出一种基于连续小波变换(CWT)、卷积神经网络(CNN)和支持向量机(SVM)的滚动轴承故障诊断方法(CWT—CNN—SVM)。首先,利用CWT对滚动轴承振动信号进行多尺度时频分析,为后续故障诊断提供更详细的特征;然后,将提取到的时频图作为输入,利用CNN深层次学习故障特征信息;最后,采用SVM对输出结果进行分类,以实现精确的故障类型识别。与BPNN、SVM、CWT—CNN以及CWT—ResNet等方法比较,试验结果表明,CWT—CNN—SVM故障诊断准确率最高,单次准确率达到100%,5次重复试验准确率为99.62%。CWT—CNN—SVM在处理复杂的滚动轴承故障诊断问题时,不仅诊断准确,同时展现出深度学习与故障诊断相结合的优势,能进一步提升小数据集的性能。所提出的CWT—CNN—SVM方法对于提升农机滚动轴承故障诊断性能,具有一定的理论价值和实际应用前景。 展开更多
关键词 故障诊断 农机 滚动轴承 连续小波变换 卷积神经网络 支持向量机
在线阅读 下载PDF
基于Faster R-CNN的作物生物密度智能识别方法 被引量:1
12
作者 李修华 李倩 +2 位作者 张瀚文 丁璐 王泽平 《生物工程学报》 北大核心 2025年第10期3828-3839,共12页
准确获取大田作物数量和密度不仅是水肥管理按需投入的关键,也是保障作物产量和品质的关键。无人机(unmanned aerial vehicle,UAV)航拍可以快速且大面积地获取大田作物的分布图像信息,但是单一类型密集目标的准确识别对于大多数识别算... 准确获取大田作物数量和密度不仅是水肥管理按需投入的关键,也是保障作物产量和品质的关键。无人机(unmanned aerial vehicle,UAV)航拍可以快速且大面积地获取大田作物的分布图像信息,但是单一类型密集目标的准确识别对于大多数识别算法来说都是一个巨大的挑战。本研究以香蕉苗为例,通过无人机高空航拍香蕉园的图像,研究密集目标高效识别方法。本研究提出了一种“裁-识-拼”的策略,构建了一个基于改进的Faster R-CNN算法的计数方法。该方法先将包含高密集目标的图像按不同尺寸(模拟不同飞行高度)裁剪成大量图像瓦片,并采用对比度限制自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法提高图像质量,构建了包含36000张图像瓦片的香蕉苗数据集;然后采用经过参数优化的Faster R-CNN网络训练香蕉苗识别模型;最后将识别结果进行反拼接,并设计了一种边界去重算法,对最终的计数结果进行校正,以减少图像裁剪引起的香蕉苗重复识别。结果表明,经过参数优化的Faster R-CNN对不同尺寸的香蕉图像数据集的识别精度最高达到了0.99;去重算法可以将针对航拍原始图像的平均计数误差从1.60%降低到0.60%,香蕉苗的平均计数准确率达到99.4%。本研究提出的方法有效解决了高分辨率航拍图像中密集小目标识别难题,为精准农业中的作物密度智能监测提供了高效可靠的技术支撑。 展开更多
关键词 果园计数 香蕉 Faster R-cnn 深度学习 去重
原文传递
基于改进Faster R-CNN的焊缝缺陷检测方法 被引量:3
13
作者 陈利琼 梅后金 +1 位作者 胡洪宣 赵奎 《科学技术与工程》 北大核心 2025年第5期2027-2033,共7页
管道内部的焊缝缺陷是导致管道发生泄漏和破裂事故的主要原因,而X射线能够有效地检测到这些缺陷。然而,焊缝缺陷存在种类多、尺寸小和背景复杂等问题,影响检测精度。针对目前基于深度学习的焊缝缺陷检测模型对图像复杂背景和光照变化的... 管道内部的焊缝缺陷是导致管道发生泄漏和破裂事故的主要原因,而X射线能够有效地检测到这些缺陷。然而,焊缝缺陷存在种类多、尺寸小和背景复杂等问题,影响检测精度。针对目前基于深度学习的焊缝缺陷检测模型对图像复杂背景和光照变化的适应性不足、小目标检测效果不佳的问题。在快速区域卷积神经网络(faster region convolutional neural networks,Faster R-CNN)网络的主干网络上添加通道注意力机制和对残差块结构进行修改,并采用ROI Align替换传统Faster R-CNN网络的ROI Pooling的改进模型。实验结果表明:改进后的Faster R-CNN网络模型与原算法相比,平均精度值(mean average precision,mAP)和F_(1)分别比原算法提升了15.82%和16.44%,能够满足焊缝缺陷检测的高精度要求,具有重要的理论意义与良好的工程应用前景。 展开更多
关键词 深度学习 缺陷检测 X射线图像 Faster R-cnn
在线阅读 下载PDF
基于PLSR-CNN的锂电池热失控特征气体拉曼检测方法
14
作者 张伟 杨旭 +1 位作者 黄鑫 张海军 《消防科学与技术》 北大核心 2025年第4期525-531,共7页
针对锂离子电池热失控早期快速监测预警,提出了一种热失控特征气体拉曼检测识别算法,该方法创新性开发了最小二乘-卷积神经网络(PLSR-CNN)的方法 ,从低信噪比的拉曼气体信号中准确提取本征信号,并结合偏最小二乘回归技术(PLSR)进行定量... 针对锂离子电池热失控早期快速监测预警,提出了一种热失控特征气体拉曼检测识别算法,该方法创新性开发了最小二乘-卷积神经网络(PLSR-CNN)的方法 ,从低信噪比的拉曼气体信号中准确提取本征信号,并结合偏最小二乘回归技术(PLSR)进行定量分析,极大提升了拉曼气体检测技术检测预警效果。结果表明,该方法在定性分析方面准确率高达99.8%,在定量分析方面准确率高达96.4%。因此,该方法在检测领域方面具有良好的应用前景,可为进一步提高热失控气体识别准确率,完善气体识别模型提供理论和技术支持。 展开更多
关键词 热失控气体 拉曼 cnn PLSR
在线阅读 下载PDF
基于DCGAN-CNN的小样本通信干扰信号识别 被引量:1
15
作者 李程 陈明虎 +2 位作者 施育鑫 张宁松 胡凯 《无线电通信技术》 北大核心 2025年第1期70-79,共10页
在复杂电磁环境中,获取真实干扰信号样本会比较困难。针对该问题,提出了一种基于深度卷积生成对抗网络-卷积神经网络(Deep Convolution Generative Adversarial Network-Convolutional Neural Network,DCGAN-CNN)的小样本通信干扰信号... 在复杂电磁环境中,获取真实干扰信号样本会比较困难。针对该问题,提出了一种基于深度卷积生成对抗网络-卷积神经网络(Deep Convolution Generative Adversarial Network-Convolutional Neural Network,DCGAN-CNN)的小样本通信干扰信号识别方法。该方法利用DCGAN的生成对抗特性来扩充小样本通信干扰信号时的频图数据集,将真实样本与生成样本混合后,输入到CNN中进行训练识别,在DCGAN和CNN中引入学习率调度器,帮助模型更好地收敛。仿真结果表明,所提方法可有效提高小样本情况下通信干扰信号的识别率。 展开更多
关键词 通信抗干扰 通信干扰信号识别 小样本学习 深度卷积生成对抗网络-卷积神经网络
在线阅读 下载PDF
基于CNN-Transformer模型的堆垛机振动故障诊断研究
16
作者 孙晓霞 王博 孟文俊 《起重运输机械》 2025年第20期78-85,共8页
堆垛机在实际运行过程中存在缺乏故障数据的挑战,且利用阈值设定判断堆垛机的运行情况误差较大。为了解决此问题,文中提出一种多源数据样本融合到结构映射策略,利用卷积神经网络的局部特征提取能力与Transformer的时序建模优势构建了CNN... 堆垛机在实际运行过程中存在缺乏故障数据的挑战,且利用阈值设定判断堆垛机的运行情况误差较大。为了解决此问题,文中提出一种多源数据样本融合到结构映射策略,利用卷积神经网络的局部特征提取能力与Transformer的时序建模优势构建了CNN-Transformer模型进行堆垛机的振动故障识别。实验结果表明:该模型展现出优良的故障识别精度与泛化性能。 展开更多
关键词 堆垛机 多源数据融合 cnn Transformer 振动故障诊断
在线阅读 下载PDF
基于改进Retinex与双CNNs的钢轨表面缺陷图像增强算法研究
17
作者 罗晖 章硕生 +1 位作者 曾伟 张金华 《电子测量技术》 北大核心 2025年第13期189-198,共10页
在钢轨表面缺陷检测过程中,受光照不均、镜头抖动等外界因素的影响,采集的图像存在对比度低、背景不均匀和缺陷细节模糊等问题。为此,提出一种基于改进Retinex与双CNNs的钢轨表面缺陷图像增强算法。首先,将钢轨表面缺陷RGB图像转换为HS... 在钢轨表面缺陷检测过程中,受光照不均、镜头抖动等外界因素的影响,采集的图像存在对比度低、背景不均匀和缺陷细节模糊等问题。为此,提出一种基于改进Retinex与双CNNs的钢轨表面缺陷图像增强算法。首先,将钢轨表面缺陷RGB图像转换为HSV空间后,采用引入均值和均方差,加入控制图像动态参数的Retinex算法,实现V分量对比度的调整,再通过自适应伽马变换校正图像曝光;其次,对S分量根据亮度进行自适应非线性增强,解决光照变化带来的背景不均匀问题;然后,为了进一步解决镜头抖动产生的缺陷图像细节模糊问题,设计了基于U-Net结构的去模糊子网络和超分辨细节恢复子网络组成的双CNNs网络,学习原始图像和增强后图像的语义特征,并提取其纹理特征,以获取高质量图像的纹理和细节信息。最后,采用RSDDs数据集和自制钢轨表面缺陷模糊图像数据集对模型进行训练和测试。实验结果表明,与现有的主流算法相比,峰值信噪比和结构相似性分别提高了2.61 dB和0.026,在视觉上较另外10种方法获得的钢轨表面缺陷图像具有较高的对比度、清晰的缺陷细节和丰富的纹理信息。 展开更多
关键词 钢轨表面缺陷 HSV 改进Retinex 图像增强 cnns 去模糊
原文传递
基于CNN算法的铝卷识别技术应用研究
18
作者 吴瑞蕤 王晓颜 陈春灿 《有色金属加工》 2025年第4期50-53,共4页
结合铝板带加工企业的生产场景,针对铝卷物料形态、颜色、大小以及背景难分离的实际工业场景,运用机器视觉技术及CNN模型算法对铝卷进行识别与定位。通过视频监控系统,自动完成铝卷的识别和定位,满足常规物料标识技术无法满足的特定场... 结合铝板带加工企业的生产场景,针对铝卷物料形态、颜色、大小以及背景难分离的实际工业场景,运用机器视觉技术及CNN模型算法对铝卷进行识别与定位。通过视频监控系统,自动完成铝卷的识别和定位,满足常规物料标识技术无法满足的特定场景的需求。系统基于通用操作系统和开发工具进行软件开发,具备较好的工业场景适应能力。 展开更多
关键词 铝板带加工 铝卷 物料识别 cnn模型
在线阅读 下载PDF
基于CNN-SLinformer算法的风电机组偏航系统故障预测
19
作者 火久元 谢东宸 +1 位作者 常琛 李昕 《湖南大学学报(自然科学版)》 北大核心 2025年第8期140-150,共11页
随着风电产业的快速发展,风电机组故障停机的比例也在上升,其中偏航系统故障尤为突出,占据了总停机时间的近三分之一(28.7%).为减少停机时间和运维费用,本文提出了一种基于SCADA数据的深度学习模型CNN-Smart_Linformer(CNN-SLinformer)... 随着风电产业的快速发展,风电机组故障停机的比例也在上升,其中偏航系统故障尤为突出,占据了总停机时间的近三分之一(28.7%).为减少停机时间和运维费用,本文提出了一种基于SCADA数据的深度学习模型CNN-Smart_Linformer(CNN-SLinformer),用于预测风电机组偏航系统的故障发生时间.该模型通过引入动态自注意力权重计算线性投影矩阵,自适应地捕捉输入序列的变化,显著增强了模型在不同运行环境下的泛化能力.它结合了卷积神经网络(CNN)在局部特征提取的优势与SLinformer在捕捉长期依赖关系的能力.实际风电场SCADA数据的实验结果表明,CNN-SLinformer模型在偏航故障预测任务中显著提高了预测精度,Score降低至144.50,同时模型运行时间更短,为风电场提供了有效的故障预测工具. 展开更多
关键词 风电机组 偏航系统 卷积神经网络(cnn) SLinformer 故障预测
在线阅读 下载PDF
基于AirComp的分布式CNN推理资源调度研究
20
作者 刘乔寿 邓义锋 +1 位作者 胡昊南 杨振巍 《电子与信息学报》 北大核心 2025年第7期2263-2272,共10页
在传统AirComp系统中,汇聚节点接收到来自不同发送端的信号相位是否严格对齐将直接影响Air-Comp的计算精度,将AirComp引入分布式联邦学习和分布式推理系统中,由于相位对齐问题造成的计算误差则会导致模型训练精度和推理精度下降。目前,... 在传统AirComp系统中,汇聚节点接收到来自不同发送端的信号相位是否严格对齐将直接影响Air-Comp的计算精度,将AirComp引入分布式联邦学习和分布式推理系统中,由于相位对齐问题造成的计算误差则会导致模型训练精度和推理精度下降。目前,现有的AirComp分布式联邦学习和分布式推理系统,无论在训练还是推理过程中,基本上都未考虑信道对模型性能的影响,导致其推理精度远低于本地训练和推理的结果,这一点在低信噪比时表现得尤为突出。该文提出了一种MOSI-AirComp系统,其中同一轮参与计算的发射信号来自同一节点,因此可以忽略信号的相位对齐问题。此外,该文设计了一种双支路训练模型,上支路基于原始模型的基础上添加Loss层模拟信道干扰,而下支路保持原始的网络模型结构用于推理任务,以实现更好的抗衰落和抗噪声能力。该文还提出了一种基于权重的功率控制方案和路径选择算法,根据节点间距离和模型权重选择最优的传输回路,并将模型权重作为功率控制因子的一部分来调节传输功率,以此实现卷积过程中的乘法操作,同时利用Air-Comp的叠加特性完成加法操作,从而实现空中卷积。仿真结果证明了MOSI-AirComp系统的有效性。与传统模型相比,双支路训练模型在小尺度衰落场景下,MNIST数据集和CIFAR10数据集在不同信噪比下的推理精度分别提高了2%~18%和0.4%~11.2%。 展开更多
关键词 空中计算(AirComp) 分布式推理 卷积神经网络(cnn) 功率控制
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部