期刊文献+
共找到138,295篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation of CdSe/ZnSe Core-shell Nanocrystal in One-step Reaction 被引量:2
1
作者 FEI Xiao-fang SHAN Gui-ye +3 位作者 KONG Xiang-gui WANG Xin ZENG Qing-hui ZHANG You-lin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第6期728-733,共6页
High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich... High-quality Zn-doped CdSe core-shell nanocrystals were successfully prepared by incorporating a stoichiometric amount of Zn precursor into the CdSe reaction system, in which the Se precursor was excess and an Se-rich surface was formed. By injecting different amounts of Zn precursor, the core-shell nanocrystals demonstrated by the emission spectra were formed. The obtained Zn-doped CdSe nanocrystals exhibit a photoluminescence efficiency from 30% to 85%, which is comparable to those for the reported CdSe/ZnS, CdSe/CdS in the literature. In particular, a shell ZnSe layer with different thicknesses of ZnSe can be formed in this experiment by only changing the amount of Zn precursor added, which is simple and effective. 展开更多
关键词 CdSe/ZnSe CORE-SHELL one-step PHOTOLUMINESCENCE
在线阅读 下载PDF
Achievable dual-strategy to stabilize Li-rich layered oxide interface by a one-step wet chemical reaction towards long oxygen redox reversibility 被引量:2
2
作者 Bin He Yujie Dai +7 位作者 Shuai Jiang Dawei Chen Xilong Wang Jie Song Dan Xiao Qian Zhao Yan Meng Wei Feng 《Journal of Energy Chemistry》 2025年第2期120-131,I0004,共13页
Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capac... Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials. 展开更多
关键词 Lithium-rich layered oxide cathode one-step wet chemical reaction Surface coating Local gradient doping Interfacial oxygen
在线阅读 下载PDF
Post-synthetic modification strategy to construct Co-MOF composites for boosting oxygen evolution reaction activity
3
作者 ZHENG Haifeng GUO Xingzhe +5 位作者 WEI Yunwei WANG Xinfang QI Huimin YAN Yuting ZHANG Jie LI Bingwen 《无机化学学报》 北大核心 2026年第1期193-202,共10页
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul... The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276. 展开更多
关键词 PYRENE metal-organic frameworks composite catalyst oxygen evolution reaction density functional theory
在线阅读 下载PDF
Preparation and Characterization of Calcium Carboaluminate via One-step Method
4
作者 YU Haiyan DING Tianhui +2 位作者 WANG Jiazhen WANG Yingxiang WANG Tianlei 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期210-216,共7页
Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were inv... Calcium carboaluminate was successfully prepared by a simple and efficient one-step method,and the effects of temperature,time,raw material ratio,carbonate type and heavy CaCO_(3)particle size on the products were investigated in detail.The results show that increasing the temperature and extending the reaction time can enhance the yield and crystallisation degree of calcium carboaluminate.The proportion of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is a pivotal factor in the synthesis of calcium carboaluminate.When the ratio of Ca(OH)_(2),Al(OH)_(3)and CaCO_(3)is 3:2:1,the diffraction peaks of calcium carboaluminate in the products are relatively sharp and strong.Furthermore,the purity and crystallinity of the synthesized calcium carboaluminate are higher when heavy CaCO_(3)with the particle size of 120 mesh is used as the carbonate raw material,in comparison to CO_(2),Na_(2)CO_(3)and light CaCO_(3).As results,a simple and efficient method for the synthesis of calcium carboaluminate is proposed,which will provide a solid experimental foundation and technical support for the industrial application of calcium carboaluminate in marine concrete. 展开更多
关键词 calcium carboaluminate heavy CaCO_(3) one-step process process parameters
原文传递
Progress in MOF-based catalyst design and reaction mechanisms for CO_(2)hydrogenation to methanol
5
作者 YU Zhifu JIANG Lei WU Mingbo 《燃料化学学报(中英文)》 北大核心 2026年第1期146-162,共17页
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon... Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies. 展开更多
关键词 CO_(2)hydrogenation metal-organic frameworks(MOFs) catalyst design reaction mechanism METHANOL
在线阅读 下载PDF
Production of ^(287,288)Mc isotopes in the ^(48)Ca+^(243)Am reaction at China Accelerator Facility for Superheavy Elements
6
作者 X.Y.Huang Z.Y.Zhang +38 位作者 J.G.Wang L.Ma C.L.Yang M.H.Huang X.L.Wu Z.G.Gan H.B.Yang M.M.Zhang Y.L.Tian Y.S.Wang J.Y.Wang Y.H.Qiang G.Xie S.Y.Xu Z.Zhao Z.C.Li L.C.Sun L.Zhu X.Zhang H.Zhou F.Guan Z.H.Li W.X.Huang Z.Qin Y.Wang X.J.Yin Y.F.Cui Z.W.Lu Y.He L.T.Sun Z.Z.Ren S.G.Zhou V.K.Utyonkov A.A.Voinov Yu.S.Tsyganov A.N.Polyakov D.I.Solovyev N.D.Kovrizhnykh M.V.Shumeiko 《Chinese Physics Letters》 2026年第1期9-16,共8页
We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-... We report the results of the experiment on synthesizing ^(287,288)Mc isotopes (Z=115) using the fusionevaporation reaction ^(243)Am(^(48)Ca,4n,3n)^(287,288)Mc at the Spectrometer for Heavy Atoms and Nuclear Structure-2(SHANS2),a gas-filled recoil separator located at the China Accelerator Facility for Superheavy Elements(CAFE2).In total,20 decay chains are attributed to ^(288)Mc and 1 decay chain is assigned to ^(287)Mc.The measured oa-decay properties of ^(287,288)Mc as well as its descendants are consistent with the known data.No additional decay chains originating from the 2n or 5n reaction channels were detected.The excitation function of the ^(243)Am(^(48)Ca,3n)^(288)Mc reaction was measured at the cross-section level of picobarn,which indicates the promising capability for the study of heavy and superheavy nuclei at the facility. 展开更多
关键词 spectrometer heavy atoms fusionevaporation reaction China Accelerator Facility Superheavy Elements PRODUCTION decay chains ISOTOPES ca am reaction mc
原文传递
Grain boundary engineered bifunctional PtCuMo aerogel for anodizing reactions in broad-spectrum direct liquid fuel cells
7
作者 Jingxiu Liu Qianzhuo Lei +5 位作者 Jin Zhang Lishou Ban Yanyi Liu Longchao Zhuo Xijun Liu Jia He 《Nano Research》 2026年第1期290-300,共11页
The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in a... The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems. 展开更多
关键词 grain boundary engineering PtCuMo nanowires methanol oxidation reaction ethanol oxidation reaction broad-spectrum direct liquid fuel cells
原文传递
Advanced isoconversional kinetic analysis of lepidolite sulfation product decomposition reactions for selectively extracting lithium
8
作者 Yubo Liu Baozhong Ma +4 位作者 Jiahui Cheng Xiang Li Hui Yang Chengyan Wang Yongqiang Chen 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期217-227,共11页
The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.A... The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium. 展开更多
关键词 LITHIUM LEPIDOLITE decomposition reactions KINETICS isoconversional analysis
在线阅读 下载PDF
Synergistic Oxygen Vacancy and Ru-N Coordination in RuO_(2)@NCC for Enhanced Acidic Oxygen Evolution Reaction
9
作者 Mi Luo Linyao Huang +2 位作者 Chen Shen Tianhua Yang Chenguang Wang 《Carbon Energy》 2026年第1期115-125,共11页
Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a fo... Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a formidable challenge.Herein,we propose a dual-engineering strategy to stabilize Ru-based catalysts by synergizing the oxygen vacancy site-synergized mechanism-lattice oxygen mechanism(OVSM-LOM)with Ru-N bond stabilization.The engineered RuO_(2)@NCC catalyst exhibits exceptional OER performance in 0.5 M H2SO4,achieving an ultralow overpotential of 215 mV at 10 mA cm^(-2) and prolonged stability for over 327 h.The catalyst delivers 300 h of continuous operation at 1 A cm^(-2),with a negligible degradation rate of only 0.067 mV h-1,further demonstrating its potential for practical application.Oxygen vacancies unlock the OVSM-LOM pathway,bypassing the sluggish adsorbate evolution mechanism(AEM)and accelerating reaction kinetics,while the Ru-N bonds suppress Ru dissolution by anchoring low-valent Ru centers.Quasi-in situ X-ray photoelectron spectroscopy(XPS),X-ray absorption spectroscopy(XAS),and isotopic labeling experiments confirm the lattice oxygen participation with *O formation as the rate-determining step.The Ru-N bonds reinforce the structural integrity by stabilizing low-valent Ru centers and inhibiting overoxidation.Theoretical calculations further verify that the synergistic interaction between OVs and Ru-O(N)active sites optimizes the Ru d-band center and stabilizes intermediates,while Ru-N coordination enhances structural integrity.This study establishes a novel paradigm for designing robust acidic OER catalysts through defect and coordination engineering,bridging the gap between activity and stability for sustainable energy technologies. 展开更多
关键词 OVSM-LOM oxygen evolution reaction oxygen vacancy Ru-N XAFS
在线阅读 下载PDF
Solar-Driven Redox Reactions with Metal Halide Perovskites Heterogeneous Structures
10
作者 Qing Guo Jin‑Dan Zhang +1 位作者 Jian Li Xiyuan Feng 《Nano-Micro Letters》 2026年第2期337-367,共31页
Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks... Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed. 展开更多
关键词 Metal halide perovskite HETEROJUNCTION Redox reaction Solar-to-chemical conversion
在线阅读 下载PDF
Differences in competitive reactions between hydrogarnet and quicklime during Bayer digestion process
11
作者 Tai-yang JI Yi-lin WANG +4 位作者 Tian-gui QI Qiu-sheng ZHOU Zhi-hong PENG Gui-hua LIU Xiao-bin LI 《Transactions of Nonferrous Metals Society of China》 2026年第1期298-308,共11页
The differences in the competitive reactions of hydrogarnet and quicklime when reacting with titaniumcontaining and silicon-containing minerals during the Bayer digestion process were investigated.Thermodynamic analys... The differences in the competitive reactions of hydrogarnet and quicklime when reacting with titaniumcontaining and silicon-containing minerals during the Bayer digestion process were investigated.Thermodynamic analysis,artificial mineral experiments,and an evaluation of the digestion effect of natural diasporic bauxite were conducted.The results indicate that hydrogarnet shows a preferential reaction with anatase,and this preference becomes more pronounced as the silicon saturation coefficient increases.In contrast,quicklime participates in non-selective reactions with both anatase and desilication products(DSP).The preference of hydrogarnet for anatase significantly enhances the utilization efficiency of CaO in the high-temperature Bayer digestion process. 展开更多
关键词 HYDROGARNET QUICKLIME competitive reactions silicon saturation coefficient BAUXITE Bayer digestion
在线阅读 下载PDF
Fe-loaded S,N co-doped carbon catalyst for oxygen reduction reaction with enhanced electrocatalytic activity and durability
12
作者 Shengzhi He Chunwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期315-321,共7页
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-... Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications. 展开更多
关键词 zinc-air batteries oxygen reduction reaction iron-loaded nitrogen-doped carbon sulfur-doping
在线阅读 下载PDF
Enhanced nitrate reduction to ammonia using Cu-Ni catalyst:Synergistic mechanisms and reaction pathways
13
作者 Yansen Qu Xin Li +4 位作者 Yingjie Xia Haosheng Lan Le Ding Jing Zhong Xinghua Chang 《Journal of Environmental Sciences》 2026年第1期23-32,共10页
Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate... Accelerated industrialization combined with over-applied nitrogen fertilizers results in serious nitrate pollution insurface and ground water,disrupting the balance of the global nitrogen cycle.Electrochemical nitrate reduction(eNO_(3)RR)emerges as an attractive strategy to simultaneously enable nitrate removal and decentralized ammo-nia fabrication,restoring the globally perturbed nitrogen cycle.However,complex deoxygenation-hydrogenationprocesses and sluggish proton-electron transfer kinetics significantly hinder practical application of eNO_(3)RR.In this study,we developed carbon-coated Cu-Ni bimetallic catalysts derived from metal-organic frameworks(MOFs)to facilitate eNO_(3)RR.The unique structural features of catalyst promote enhanced synergy between Cuand Ni,effectively addressing critical challenges in nitrate reduction.Comprehensive structural and electrochem-ical analysis demonstrate that electrochemical nitrate-to-nitrite conversion mainly takes place on active Cu sites,the introduction of Ni could efficiently accelerate the generation of aquatic active hydrogen,promoting the hy-drogenation of oxynitrides during eNO_(3)RR.In addition,Ni introduction could push up the d-band center of thecatalyst,thus enhancing the adsorption and activation of nitrate and the corresponding intermediates.Detailedreaction pathways for nitrate-to-ammonia conversion are illuminated by rotating disk electrode(RDE),in-situFourier-transform infrared spectroscopy,in-situ Raman spectrum and electrochemical impedance spectroscopy(EIS).Benefiting from the synergistic effect of Cu and Ni,optimum catalyst exhibited excellent nitrate reductionperformance.This work provides a new idea for elucidating the underlying eNO_(3)RR reaction mechanisms andcontributes a promising strategy for designing efficient bimetallic electrocatalysts. 展开更多
关键词 Nitrate reduction to ammonia Copper-nickel nanoalloy reaction pathway
原文传递
Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO_(2) Reduction Reaction
14
作者 Jianglong Liu Yunpeng Liu +5 位作者 Shunzheng Zhao Baotong Chen Guang Mo Zhongjun Chen Yuechang Wei Zhonghua Wu 《Nano-Micro Letters》 2026年第1期647-697,共51页
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr... Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application. 展开更多
关键词 Bismuth-based catalysts CO_(2)reduction reaction Regulation strategy Catalytic mechanism REVIEW
在线阅读 下载PDF
Advances in oxygen evolution reaction electrocatalysts via direct oxygen-oxygen coupling pathway:Recent progress,challenges,and perspectives
15
作者 Xinying Yang Zhengda Chen +4 位作者 Guoxin Zhang Yuping Sun Jiangbo Lu Haiping Lin Xing Fan 《Nano Research》 2026年第1期23-49,共27页
Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the li... Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the linear scaling relationship,thereby exhibiting large overpotentials.In the lattice oxygen mechanism(LOM),the OER can be enhanced by enabling direct O_(2)formation.However,this enhancement is accompanied by the generation of oxygen vacancies,which presents a significant challenge to the long-term stability of LOMOER,particularly when operating at high current densities.Recently,the*O-*O coupling mechanism(OCM)has emerged as a promising alternative;it not only breaks the linear scaling relationship but also ensures catalytic stability.This review encapsulates the cutting-edge advancements in electrocatalysts that are grounded in the OCM,offering a detailed interpretation on the foundational principles guiding the design of OCM-OER catalysts.It also highlights recent theoretical investigations combining machine learning(ML)with density functional theory(DFT)calculations to reveal OER mechanisms.At the end of this review,the challenges and opportunities associated with OCM-OER electrocatalysts are discussed. 展开更多
关键词 oxygen evolution reaction *O-*O coupling mechanism dual-atom catalysts machine learning
原文传递
Effect of active metal oxide dopants on wettability and interfacial reaction between K417G superalloy and Al_(2)O_(3)-based ceramic shell
16
作者 Bao-hong KOU Wen-tao ZHOU +1 位作者 Yong-hui PENG Jing OUYANG 《Transactions of Nonferrous Metals Society of China》 2026年第1期244-258,共15页
Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,a... Some active metal oxides(Al_(2)O_(3),TiO_(2),and Cr_(2)O_(3))were selected as dopants to the Al_(2)O_(3)-based ceramic shells for investment casting of K417G superalloy.The effects of dopant types and contents(0,2,5,and 8 wt.%)on the wettability and interfacial reaction between the alloy and shell were investigated by a sessile-drop experiment.The results show that increasing the Al_(2)O_(3) doping contents(0−8 wt.%)reduces the porosity(21.74%−10.08%)and roughness(3.22−1.34μm)of the shell surface.The increase in Cr_(2)O_(3) dopant content(2−8 wt.%)further exacerbates the interfacial reaction,leading to an increase in the thickness of the reaction layer(2.6−3.1μm)and a decrease in the wetting angle(93.9°−91.0°).The addition of Al_(2)O_(3) and TiO_(2) dopants leads to the formation of Al_(2)TiO_(5) composite oxides in the reaction products,which effectively inhibits the interfacial reaction.The increase in TiO_(2) dopant contents(0−8 wt.%)further promotes the formation of Al_(2)TiO_(5),which decreases the thickness of the interfacial reaction layer(3.9−1.2μm)and increases the wetting angle(95.0°−103.8°).The introduced dopants enhance the packing density of the shell surface,while simultaneously suppress the diffusion of active metal elements from the alloy matrix to the interface. 展开更多
关键词 Al_(2)O_(3)-based ceramic shell K417G superalloy metal oxide dopants interfacial reaction WETTABILITY
在线阅读 下载PDF
One-step Eco-friendly Fabrication of Antibacterial Polyester Via On-line Amination Reaction by Melt Coextrusion
17
作者 ZHANG Huan ZHAO Qinghua +4 位作者 ZHONG Yaping CAI Ruiyan LIU Ke WANG Dong LU Zhentan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1205-1212,共8页
The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination ... The work is dedicated to develop a one-step eco-friendly method to prepare antibacterial polyethylene terephthalate(PET).We report a one-step eco-friendly method to manufacture antibacterial PET via on-line amination reaction by melt coextrusion.Beside evenly mixing of poly(hexamethylene guanidine)(PHMG)and PET in the melt coextrusion procedure,the amination reaction also occurred between PHMG and PET under high temperature(230-270℃).The antibacterial ability of composite PET showed obvious PHMG concentration dependence,and antibacterial activity reached more than 99%when PHMG content was 2.5 wt%.Moreover,LIVE/DEAD fluorescence test further confirmed that the composite PET could kill bacteria quickly and efiectively(within 30 min);while negligible cytotoxicity was observed to HSF and HUVEC cells.Onestep eco-friendly fabrication of composite antibacterial PET was accomplished by on-line melt coextrusion.The composite antibacterial PET has potential use in multiple fields to combat with pathogenic including textiles,packaging materials,decoration materials and biomedical devices,etc. 展开更多
关键词 antibacterial polyester one-step eco-friendly method on-line amination reaction melt coextrusion cytocompatibility
原文传递
Study of the reaction mechanism for preparing powdered activated coke with SO_(2)adsorption capability via one-step rapid activation method under flue gas atmosphere
18
作者 Binxuan Zhou Jingcai Chang +5 位作者 Jun Li Jinglan Hong Tao Wang Liqiang Zhang Ping Zhou Chunyuan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期158-168,共11页
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m... In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation. 展开更多
关键词 reaction mechanism Powdered activated coke preparation SO_(2)adsorption one-step rapid activation Flue gas atmosphere
在线阅读 下载PDF
Synthesis and characterization of high-voltage cathode material LiNi_(0.5)Mn_(1.5)O_(4)by one-step solid-state reaction 被引量:3
19
作者 WANG Zhi-xing FANG Hai-sheng +3 位作者 YIN Zhou-lan LI Xin-hai GUO Hua-jun PENG Wen-jie 《Journal of Central South University of Technology》 2005年第z1期54-58,共5页
LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemi... LiNi_(0.5)Mn_(1.5)O_(4)was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry(XRD),scanning electron microscopy(SEM)and electrochemical measurement.XRD patterns show that LiNi_(0.5)Mn_(1.5)O_(4)synthesized under various conditions has cubic spinel structure.SEM images exhibit that the particle size increases with increasing calcination temperature and time.Electro chemical test shows that the LiNi_(0.5)Mn_(1.5)O_(4)calcined at 700℃for 24 h delivers up to 143 mA·h/g,and the capacity retains 132 mA·h/g after 30 cycles. 展开更多
关键词 lithium ion batteries cathode material LiNi_(0.5)Mn_(1.5)O_(4) solid-state reaction
在线阅读 下载PDF
Synthesis of Copper Oxalate Nanorods by a Simple One-step Solid-state Chemical Reaction Method
20
作者 CAOYa-li JIADian-zeng +2 位作者 LIULang XIAODing-quan XINXin-quan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第2期134-136,共3页
Copper oxalate nanorods were successfully prepared by means of a simple one-step solid-state reaction method with the assistance of a suitable surfactant, polyethylene glycol 400. The product with uniform rod-like mor... Copper oxalate nanorods were successfully prepared by means of a simple one-step solid-state reaction method with the assistance of a suitable surfactant, polyethylene glycol 400. The product with uniform rod-like morphology was characterized by XRD, TEM and SEM. The formational mechanism of the rod-like structure was also preliminary discussed. 展开更多
关键词 Nanorod NANOSTRUCTURE Solid-state reaction Copper oxalate
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部