In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c...In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.展开更多
Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications d...Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications due to their chemical diversity.Converting 2D TMDs into one-dimensional(1D)TMDs nanotubes can not only retain some advantages of 2D nanosheets but also providing a unique direction to explore the novel properties of TMDs materials in the 1D limit.However,the controllable preparation of high-quality nanotubes remains a major challenge.It is very necessary to review the advanced development of one-dimensional transition metal dichalcogenide nanotubes from preparation to application.Here,we first summarize a series of bottom-up synthesis methods of 1D TMDs,such as template growth and metal catalyzed method.Then,top-down synthesis methods are summarized,which included selfcuring and stacking of TMDs nanosheets.In addition,we discuss some key applications that utilize the properties of 1D-TMDs nanotubes in the areas of catalyst preparation,energy storage,and electronic devices.Last but not least,we prospect the preparation methods of high-quality 1D-TMDs nanotubes,which will lay a foundation for the synthesis of high-performance optoelectronic devices,catalysts,and energy storage components.展开更多
The oxygen evolution reaction(OER),a critical half-reaction in water electrolysis,has garnered significant attention.However,sluggish OER kinetics has emerged as a major impediment to efficient electrochemical energy c...The oxygen evolution reaction(OER),a critical half-reaction in water electrolysis,has garnered significant attention.However,sluggish OER kinetics has emerged as a major impediment to efficient electrochemical energy conversion.There is an urgent need to design novel electrocatalysts with optimized OER kinetics and enhanced intrinsic activity to improve overall OER performance.Herein,one-dimensional(1D)nanocomposites with high electrocatalytic activity were developed through the deposition of CoFePBA nanocubes onto the surface of MnO_(2) nanowires.The electronic structure of the nanocomposite surface was modified,and the synergistic effects between transition metals were leveraged to enhance catalytic activity through the deposition of Prussian blue analog(PBA)nanocubes on manganese dioxide nanowires.Specifically,CoFePBA featured an open crystal structure that offiered numerous electrochemical active sites and efficient charge transfer pathways.Additionally,the synergistic interactions between Co and Fe significantly reduced the OER overpotential.Additionally,the 1D rigid MnO_(2) acted as protective armor,ensuring the stability of active sites within CoFePBA during the OER.The synthesized MnO_(2)@CoFePBA achieved an overpotential of 1.614 V at 10 mA/cm^(2) and a small Tafel slope of 94 mV/dec and demonstrated stable performance for over 200 h.This work offers new insights into the rational design of various PBA-based nanocomposites with high activity and stability.展开更多
Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground s...Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.展开更多
In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical ...In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical model is proposed,resulting in coupled governing integral equations that account for interfacial normal and shear stresses.To numerically solve these integral equations,an expansion method using orthogonal Chebyshev polynomials is employed.The results provide insights into the interfacial stresses,axial force,as well as axial and vertical deformations of the PQC film.Additionally,fracture criteria,including stress intensity factors,mode angles,and the J-integral,are evaluated.The solution is compared with the membrane theory,neglecting the normal stress and bending deformation.Finally,the effects of stiffness and aspect ratio on the PQC film are thoroughly discussed.This study serves as a valuable guide for controlling the mechanical response and conducting safety assessments of PQC film systems.展开更多
Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is...Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional(1D)-TM_(6)Te_(6) nanowires to form TM_(6)Te_(6)@CNT-(16,0) 1D van der Waals heterostructures(1D-vd WHs). The systematic first-principles studies on the electronic properties of 1D-vd WHs show that N-type doping CNTs can be formed by charge transfer from TM_(6)Te_(6) nanowires to CNTs, without introducing additional carrier scattering.Particularly, contribution from both T M(e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp^(3) hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.展开更多
We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method...We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.展开更多
Roxarsone(ROX)is a commonly used antibacterial and growth-promoting additive to animal feed.The development of an effective method for detecting ROX and its conversion products is of importance because of their potent...Roxarsone(ROX)is a commonly used antibacterial and growth-promoting additive to animal feed.The development of an effective method for detecting ROX and its conversion products is of importance because of their potential harm to human health and ecosystem.Herein,we report the designed synthesis of a novel one-dimensional covalent organic framework(1D COF),named EP-COF,and its application as a fluorescent probe for ROX sensing.EP-COF is constructed based on imine linkages,exhibiting high crystallinity,strong fluorescence emission,and good dispersibility in water.It displays a remarkable capability to efficiently detect ROX,with an impressive detection limit of 4.5 nmol/L.Moreover,EP-COF also offers advantages of excellent selectivity,and high structural stability.This work not only presents a promising approach for the detection of harmful substances like ROX,but also serves as a valuable reference for exploring application of 1D COFs in chemical sensing.展开更多
Functional materials with multiple properties are urgent to be explored to reach high requirements for applications nowadays.In this work,a new multifunctional one-dimensional(1D)chain compound[N(C_(3)H_(7))_(4)][Cu(o...Functional materials with multiple properties are urgent to be explored to reach high requirements for applications nowadays.In this work,a new multifunctional one-dimensional(1D)chain compound[N(C_(3)H_(7))_(4)][Cu(ohpma)]·H_(2)O 1(ohpma=deprotonated N-(2-hydoxyphenyl)oxamic acid)exhibiting both 1D antiferromagnetic and nonlinear optical properties,which are both originated from the same polar[Cu(C_(8)H_(4)NO_(4))]magnetic units,has been successfully synthesized by evaporation at room temperature.Bis-polydentate nature of the(ohpma)3−ligand with constrained tridentate and bidentate coordination sites conducts Cu^(2+)ions coordinating in different geometries and forms 1D chains along the c axis,which are further separated by the[N(C_(3)H_(7))_(4)]+cations.And the 1D magnetic chains further exhibit noncentrosymmetric polar arrangement.Nonlinear optical study shows polar compound 1 exhibits a discernible second-harmonic generation(SHG)efficiency and the calculation of the partial density of states indicates that the SHG efficiency of 1 is mainly originated from the polar[Cu(C_(8)H_(4)NO_(4))]magnetic units.Moreover,magnetic susceptibility shows a broad maximum around 70 K with strong intrachain interaction of J/k B=−113.0 K but no long-range order is observed down to 2 K,suggesting that 1 shows a good 1D magnetism.Both good 1D magnetism and SHG activity suggest that 1 could be as a potential multifunctional material,particularly.展开更多
Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ...Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
The global energy crisis and environmental problems have become two unprecedented challenges.Semi-conductor photocatalysis offers a promising strategy to solve them,while its practical application requires advanced ph...The global energy crisis and environmental problems have become two unprecedented challenges.Semi-conductor photocatalysis offers a promising strategy to solve them,while its practical application requires advanced photocatalytic materials.In recent years,one-dimensional(1D)alkali-metal hexatitanate(AHT)photocatalysts have attracted considerable attention in energy and environmental fields due to their high chemical stability,excellent photoactivity,unique ion-exchange,environment-friendly,and cost-effective properties.In this review,we firstly introduce the basic properties of AHT including crystal and electronic band structure,photoactivity,and structure-property-performance relationship.Secondly,the recent ad-vances in synthesis and modification strategies of 1D AHT photocatalysts are summarized thoughtfully,followed by a comprehensive discussion on their various environmental and energy applications,includ-ing pollutant degradation,H2 generation,and CO_(2)reduction.Finally,the key challenges and prospects are also highlighted for the development of high-performance 1D AHT-based photocatalysts for practi-cal applications.We hope that this review will shed some light on the rational design of 1D Ti-O-based nanomaterials for efficient environmental remediation and solar fuel production.展开更多
The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)s...The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)systems,the generalization to explore them in higher dimensional systems is still a challenging task.In this study,we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds,where the contexture of 1D chains facilitates rich emergent properties.While the quasi-1D chains in these materials share general similarities,such as the motifs made up of MoO_(6)octahedrons,they exhibit vast complexity and remarkable tunability.We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations.Furthermore,we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models.Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems.展开更多
Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solv...Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.展开更多
Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change o...Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.展开更多
This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy pro...This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.展开更多
This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was ca...This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of ID oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area.展开更多
Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution ...Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.展开更多
A Discrete Element Method (DEM) model is developed to study the particle break- age effect on the one-dimensional compression behavior of silica sands. The 'maximum tensile stress' breakage criterion considering m...A Discrete Element Method (DEM) model is developed to study the particle break- age effect on the one-dimensional compression behavior of silica sands. The 'maximum tensile stress' breakage criterion considering multiple contacts is adopted to simulate the crushing of circular particles in the DEM. The model is compared with published experimental results. Com- parison between the compression curves obtained from the numerical and experimental results shows that the proposed method is very effective in studying the compression behavior of silica sands considering particle breakage. The evolution of compression curves at different stress levels is extensively studied using contact force distribution, variation of contact number and particle size distribution curve with loading. It is found that particle breakage has great impact on com- pression behavior of sand, particularly after the yield stress is reached and particle breakage starts. The crushing probability of particles is found to be macroscopically affected by stress level and particle size distribution curve, and microscopically related to the evolutions of contact force and coordination number. Once the soil becomes well-graded and the average coordination number is greater than 4 in two-dimension, the crushing probability of parent particles can reduce by up to 5/6. It is found that the average contact force does not always increase with loading, but increases to a peak value then decreases once the soil becomes more well-graded. It is found through the loading rate sensitivity analysis that the compression behavior of sand samples in the DEM is also affected by the loading rate. Higher yield stresses are obtained at higher loading rates.展开更多
By constructing a new conformal mapping function, we study the surface effects on six edge nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional (1D) hexagonal piezoelectric quasicrystals under a...By constructing a new conformal mapping function, we study the surface effects on six edge nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional (1D) hexagonal piezoelectric quasicrystals under anti-plane shear. Based on the Gurtin–Murdoch surface/interface model and complex potential theory, the exact solutions of phonon field, phason field and electric field are obtained. The analytical solutions of the stress intensity factor of the phonon field, the stress intensity factor of the phason field, the electric displacement intensity factor and the energy release rate are given. The interaction effects of the nano-cracks and nano-hole on the stress intensity factor of the phonon field, the stress intensity factor of the phason field and the electric displacement intensity factor are discussed in numerical examples. It can be seen that the surface effect leads to the coupling of phonon field, phason field and electric field. With the decrease of cavity size, the influence of surface effect is more obvious.展开更多
基金Supported by the Natural Science Foundation of China(51705326,52075339)。
文摘In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.
基金supported by the National Natural Science Foundation of China(No.22202065).
文摘Two-dimensional(2D)transition metal sulfides(TMDs)are emerging and highly well received 2D materials,which are considered as an ideal 2D platform for studying various electronic properties and potential applications due to their chemical diversity.Converting 2D TMDs into one-dimensional(1D)TMDs nanotubes can not only retain some advantages of 2D nanosheets but also providing a unique direction to explore the novel properties of TMDs materials in the 1D limit.However,the controllable preparation of high-quality nanotubes remains a major challenge.It is very necessary to review the advanced development of one-dimensional transition metal dichalcogenide nanotubes from preparation to application.Here,we first summarize a series of bottom-up synthesis methods of 1D TMDs,such as template growth and metal catalyzed method.Then,top-down synthesis methods are summarized,which included selfcuring and stacking of TMDs nanosheets.In addition,we discuss some key applications that utilize the properties of 1D-TMDs nanotubes in the areas of catalyst preparation,energy storage,and electronic devices.Last but not least,we prospect the preparation methods of high-quality 1D-TMDs nanotubes,which will lay a foundation for the synthesis of high-performance optoelectronic devices,catalysts,and energy storage components.
基金supported by the National Natural Science Foundation of China(No.52371240)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The oxygen evolution reaction(OER),a critical half-reaction in water electrolysis,has garnered significant attention.However,sluggish OER kinetics has emerged as a major impediment to efficient electrochemical energy conversion.There is an urgent need to design novel electrocatalysts with optimized OER kinetics and enhanced intrinsic activity to improve overall OER performance.Herein,one-dimensional(1D)nanocomposites with high electrocatalytic activity were developed through the deposition of CoFePBA nanocubes onto the surface of MnO_(2) nanowires.The electronic structure of the nanocomposite surface was modified,and the synergistic effects between transition metals were leveraged to enhance catalytic activity through the deposition of Prussian blue analog(PBA)nanocubes on manganese dioxide nanowires.Specifically,CoFePBA featured an open crystal structure that offiered numerous electrochemical active sites and efficient charge transfer pathways.Additionally,the synergistic interactions between Co and Fe significantly reduced the OER overpotential.Additionally,the 1D rigid MnO_(2) acted as protective armor,ensuring the stability of active sites within CoFePBA during the OER.The synthesized MnO_(2)@CoFePBA achieved an overpotential of 1.614 V at 10 mA/cm^(2) and a small Tafel slope of 94 mV/dec and demonstrated stable performance for over 200 h.This work offers new insights into the rational design of various PBA-based nanocomposites with high activity and stability.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174026)。
文摘Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.
基金Supported by the National Natural Science Foundation of China (Nos. 11902293 and 12272353)。
文摘In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical model is proposed,resulting in coupled governing integral equations that account for interfacial normal and shear stresses.To numerically solve these integral equations,an expansion method using orthogonal Chebyshev polynomials is employed.The results provide insights into the interfacial stresses,axial force,as well as axial and vertical deformations of the PQC film.Additionally,fracture criteria,including stress intensity factors,mode angles,and the J-integral,are evaluated.The solution is compared with the membrane theory,neglecting the normal stress and bending deformation.Finally,the effects of stiffness and aspect ratio on the PQC film are thoroughly discussed.This study serves as a valuable guide for controlling the mechanical response and conducting safety assessments of PQC film systems.
基金Project supported by the National Natural Science Foundation of China (Grant No. 92477205)。
文摘Controlling charge polarity in the semiconducting single-walled carbon nanotubes(CNTs) by substitutional doping is a difficult work due to their extremely strong C–C bonding. In this work, an inner doping strategy is explored by filling CNTs with one-dimensional(1D)-TM_(6)Te_(6) nanowires to form TM_(6)Te_(6)@CNT-(16,0) 1D van der Waals heterostructures(1D-vd WHs). The systematic first-principles studies on the electronic properties of 1D-vd WHs show that N-type doping CNTs can be formed by charge transfer from TM_(6)Te_(6) nanowires to CNTs, without introducing additional carrier scattering.Particularly, contribution from both T M(e.g., Sc and Y) and Te atoms strengthens the charge transfer. The outside CNTs further confine the dispersion of Te-p orbitals in nanowires that deforms the C-π states at the bottom of the conduction band to quasi sp^(3) hybridization. Our study provides an inner doping strategy that can effectively confine the charge polarity of CNTs and further broaden its applications in some novel nano-devices.
基金supported by the National Natural Science Foundation of China(Grant No.11974420).
文摘We study the thermodynamic properties of the classical one-dimensional generalized nonlinear Klein-Gordon lattice model(n≥2)by using the cluster variation method with linear response theory.The results of this method are exact in the thermodynamic limit.We present the single-site reduced densityρ^((1))(z),averages such as(z^(2)),<|z^(n)|>,and<(z_(1)-z_(2))^(2)>,the specific heat C_(v),and the static correlation functions.We analyze the scaling behavior of these quantities and obtain the exact scaling powers at the low and high temperatures.Using these results,we gauge the accuracy of the projective truncation approximation for theφ^(4)lattice model.
基金the Science and Technology Commission of Shanghai Municipality(No.20JC1415400)for financial support。
文摘Roxarsone(ROX)is a commonly used antibacterial and growth-promoting additive to animal feed.The development of an effective method for detecting ROX and its conversion products is of importance because of their potential harm to human health and ecosystem.Herein,we report the designed synthesis of a novel one-dimensional covalent organic framework(1D COF),named EP-COF,and its application as a fluorescent probe for ROX sensing.EP-COF is constructed based on imine linkages,exhibiting high crystallinity,strong fluorescence emission,and good dispersibility in water.It displays a remarkable capability to efficiently detect ROX,with an impressive detection limit of 4.5 nmol/L.Moreover,EP-COF also offers advantages of excellent selectivity,and high structural stability.This work not only presents a promising approach for the detection of harmful substances like ROX,but also serves as a valuable reference for exploring application of 1D COFs in chemical sensing.
基金supported by the National Natural Science Foundation of China(NSFC,No.22101091)the Fundamental Research Funds for the Central Universities(No.2019kfyXKJC016)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B210003),Knowledge Innovation Program of Wuhan-Basic Research.
文摘Functional materials with multiple properties are urgent to be explored to reach high requirements for applications nowadays.In this work,a new multifunctional one-dimensional(1D)chain compound[N(C_(3)H_(7))_(4)][Cu(ohpma)]·H_(2)O 1(ohpma=deprotonated N-(2-hydoxyphenyl)oxamic acid)exhibiting both 1D antiferromagnetic and nonlinear optical properties,which are both originated from the same polar[Cu(C_(8)H_(4)NO_(4))]magnetic units,has been successfully synthesized by evaporation at room temperature.Bis-polydentate nature of the(ohpma)3−ligand with constrained tridentate and bidentate coordination sites conducts Cu^(2+)ions coordinating in different geometries and forms 1D chains along the c axis,which are further separated by the[N(C_(3)H_(7))_(4)]+cations.And the 1D magnetic chains further exhibit noncentrosymmetric polar arrangement.Nonlinear optical study shows polar compound 1 exhibits a discernible second-harmonic generation(SHG)efficiency and the calculation of the partial density of states indicates that the SHG efficiency of 1 is mainly originated from the polar[Cu(C_(8)H_(4)NO_(4))]magnetic units.Moreover,magnetic susceptibility shows a broad maximum around 70 K with strong intrachain interaction of J/k B=−113.0 K but no long-range order is observed down to 2 K,suggesting that 1 shows a good 1D magnetism.Both good 1D magnetism and SHG activity suggest that 1 could be as a potential multifunctional material,particularly.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFE03030001)the National Natural Science Foundation of China (Grant No.12075283)。
文摘Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
基金acknowledge the financial support pro-vided by the National Natural Science Foundation of China(No.52204323)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(No.E2XBRD1001).
文摘The global energy crisis and environmental problems have become two unprecedented challenges.Semi-conductor photocatalysis offers a promising strategy to solve them,while its practical application requires advanced photocatalytic materials.In recent years,one-dimensional(1D)alkali-metal hexatitanate(AHT)photocatalysts have attracted considerable attention in energy and environmental fields due to their high chemical stability,excellent photoactivity,unique ion-exchange,environment-friendly,and cost-effective properties.In this review,we firstly introduce the basic properties of AHT including crystal and electronic band structure,photoactivity,and structure-property-performance relationship.Secondly,the recent ad-vances in synthesis and modification strategies of 1D AHT photocatalysts are summarized thoughtfully,followed by a comprehensive discussion on their various environmental and energy applications,includ-ing pollutant degradation,H2 generation,and CO_(2)reduction.Finally,the key challenges and prospects are also highlighted for the development of high-performance 1D AHT-based photocatalysts for practi-cal applications.We hope that this review will shed some light on the rational design of 1D Ti-O-based nanomaterials for efficient environmental remediation and solar fuel production.
文摘The dimensionality of quantum materials strongly affects their physical properties.Although many emergent phenomena,such as charge-density wave and Luttinger liquid behavior,are well understood in one-dimensional(1D)systems,the generalization to explore them in higher dimensional systems is still a challenging task.In this study,we aim to bridge this gap by systematically investigating the crystal and electronic structures of molybdenum-oxide family compounds,where the contexture of 1D chains facilitates rich emergent properties.While the quasi-1D chains in these materials share general similarities,such as the motifs made up of MoO_(6)octahedrons,they exhibit vast complexity and remarkable tunability.We disassemble the 1D chains in molybdenum oxides with different dimensions and construct effective models to excellently fit their low-energy electronic structures obtained by ab initio calculations.Furthermore,we discuss the implications of such chains on other physical properties of the materials and the practical significance of the effective models.Our work establishes the molybdenum oxides as simple and tunable model systems for studying and manipulating the dimensionality in quantum systems.
基金supported by the National Natural Science Foundation of China (Grant No 10761005)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010104)
文摘Using the complex variable function method and the technique of conformal mapping, the anti-plane shear problem of an elliptic hole with asymmetric colfinear cracks in a one-dimensional hexagonal quasi-crystal is solved, and the exact analytic solutions of the stress intensity factors (SIFs) for mode Ⅲ problem are obtained. Under the limiting conditions, the present results reduce to the Griffith crack and many new results obtained as well, such as the circular hole with asymmetric collinear cracks, the elliptic hole with a straight crack, the mode T crack, the cross crack and so on. As far as the phonon field is concerned, these results, which play an important role in many practical and theoretical applications, are shown to be in good agreement with the classical results.
基金Projects(50878191,51109092)supported by the National Natural Science Foundation of China
文摘Based on non-Darcian flow law described by exponent and threshold gradient within a double-layered soil, the classic theory of one-dimensional consolidation of double-layered soil was modified to consider the change of vertical total stress with depth and time together. Because of the complexity of governing equations, the numerical solutions were obtained in detail by finite difference method. Then, the numerical solutions were compared with the analytical solutions in condition that non-Darcian flow law was degenerated to Dary's law, and the comparison results show that numerical solutions are reliable. Finally, consolidation behavior of double-layered soil with different parameters was analyzed, and the results show that the consolidation rate of double-layered soil decreases with increasing the value of exponent and threshold of non-Darcian flow, and the exponent and threshold gradient of the first soil layer greatly influence the consolidation rate of double-layered soil. The larger the ratio of the equivalent water head of external load to the total thickness of double-layered soil, the larger the rate of the consolidation, and the similitude relationship in classical consolidation theory of double-layered soil is not satisfied. The other consolidation behavior of double-layered soil with non-Darcian flow is the same as that with Darcy's law.
基金supported by the National Natural Science Foundation of China(Nos.51378293 and 51078199)
文摘This paper presents a strategy for computation of super-convergent solutions of multi-dimensional problems in the finite element method (FEM) by recursive application of the one-dimensional (1D) element energy projection (EEP) technique. The main idea is to conceptually treat multi-dimensional problems as generalized 1D problems, based on which the concepts of generalized 1D FEM and its consequent EEP formulae have been developed in a unified manner. Equipped with these concepts, multi-dimensional problems can be recursively discretized in one dimension at each step, until a fully discretized standard finite element (FE) model is reached. This conceptual dimension-by- dimension (D-by-D) discretization procedure is entirely equivalent to a full FE discretization. As a reverse D-by-D recovery procedure, by using the unified EEP formulae together with proper extraction of the generalized nodal solutions, super-convergent displacements and first derivatives for two-dimensional (2D) and three-dimensional (3D) problems can be obtained over the domain. Numerical examples of 3D Poisson's equation and elasticity problem are given to verify the feasibility and effectiveness of the proposed strategy.
基金The authors acknowledge the support from the National Major Project of Fundamental Research:Nanomaterials and Nanostructures(Grant No.2005CB623603)the National Natural Science Foundation of China(Grant No.10304018,10574131)the Special Fund for President Scholarship,Chinese Academy of Sciences.We also thank Dr.Liang LI,Prof.Changhui YE,Dr.Yufeng HA0,Dr.Xinsheng PENG,Dr.Shuhui SUN,Dr.Changhao LIANG,Mr.Peng YAN,Prof.Guowen MENG,and Prof.Guanghui LI for their helps in the preparation of this manuscript.
文摘This article reviews the recent developments in the controlled growth of one-dimensional (1D) oxide nanomaterials, including ZnO, SnO2, In203, Ga203, SiOx, MgO, and Al203. The growth of 2D oxide nanomaterials was carried out in a simple chemical vapor transport and condensation system. This article will begin with a survey of nanotechnology and 1D nanomaterials achieved by many researchers, and then mainly discuss on the controlled growth of ID oxide nanomaterials with their morphologies, sizes, compositions, and microstructures controlled by altering experimental parameters, such as the temperature at the source material and the substrate, temperature gradient in the tube furnace, the total reaction time, the heating rate of the furnace, the gas flow rate, and the starting material. Their roles in the formation of various morphologies are analyzed and discussed. Finally, this review will be concluded with personal perspectives on the future research directions of this area.
基金Projects(51678547,41672296,51878634,51878185,41867034)supported by the National Natural Science Foundation of China。
文摘Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.
基金Project supported by the National Natural Science Foundation of China(Nos.50909057,51208294 and 41372319)the Innovation Program of Shanghai Municipal Education Commission(No.15ZZ081)the Innovation Project of Shanghai Postgraduate Education(No.20131129)
文摘A Discrete Element Method (DEM) model is developed to study the particle break- age effect on the one-dimensional compression behavior of silica sands. The 'maximum tensile stress' breakage criterion considering multiple contacts is adopted to simulate the crushing of circular particles in the DEM. The model is compared with published experimental results. Com- parison between the compression curves obtained from the numerical and experimental results shows that the proposed method is very effective in studying the compression behavior of silica sands considering particle breakage. The evolution of compression curves at different stress levels is extensively studied using contact force distribution, variation of contact number and particle size distribution curve with loading. It is found that particle breakage has great impact on com- pression behavior of sand, particularly after the yield stress is reached and particle breakage starts. The crushing probability of particles is found to be macroscopically affected by stress level and particle size distribution curve, and microscopically related to the evolutions of contact force and coordination number. Once the soil becomes well-graded and the average coordination number is greater than 4 in two-dimension, the crushing probability of parent particles can reduce by up to 5/6. It is found that the average contact force does not always increase with loading, but increases to a peak value then decreases once the soil becomes more well-graded. It is found through the loading rate sensitivity analysis that the compression behavior of sand samples in the DEM is also affected by the loading rate. Higher yield stresses are obtained at higher loading rates.
基金Project supported by the National Key R&D Program of China (Grant No. 2017YFC1405605)the Innovation Youth Fund of the Ocean Telemetry Technology Innovation Center of the Ministry of Natural Resources, China (Grant No. 21k20190088)+1 种基金the Natural Science Foundation of Inner Mongolia, China (Grant No. 2018MS01005)the Graduate Students' Scientific Research Innovation Program of Inner Mongolia Normal University (Grant No. CXJJS19098).
文摘By constructing a new conformal mapping function, we study the surface effects on six edge nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional (1D) hexagonal piezoelectric quasicrystals under anti-plane shear. Based on the Gurtin–Murdoch surface/interface model and complex potential theory, the exact solutions of phonon field, phason field and electric field are obtained. The analytical solutions of the stress intensity factor of the phonon field, the stress intensity factor of the phason field, the electric displacement intensity factor and the energy release rate are given. The interaction effects of the nano-cracks and nano-hole on the stress intensity factor of the phonon field, the stress intensity factor of the phason field and the electric displacement intensity factor are discussed in numerical examples. It can be seen that the surface effect leads to the coupling of phonon field, phason field and electric field. With the decrease of cavity size, the influence of surface effect is more obvious.