期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于One Class-SVM+Autoencoder模型的车辆碰撞检测 被引量:6
1
作者 杨文忠 杨蒙蒙 +2 位作者 温杰彬 张志豪 富雅玲 《新疆大学学报(自然科学版)》 CAS 2020年第3期271-276,281,共7页
为尽量避免车辆碰撞事故的发生,探索了机器学习和深度学习结合的方法,利用影响车辆碰撞的多个特征变量对车辆碰撞进行检测.首先使用皮尔逊相关性分析方法分析各个特征之间的关联度,接着使用One Class-SVM模型对数据集做"异常点&qu... 为尽量避免车辆碰撞事故的发生,探索了机器学习和深度学习结合的方法,利用影响车辆碰撞的多个特征变量对车辆碰撞进行检测.首先使用皮尔逊相关性分析方法分析各个特征之间的关联度,接着使用One Class-SVM模型对数据集做"异常点"抛除操作.利用SMOTE(Synthetic Minority Over-sampling Technique)算法增加了少数类别的样本数量,最后采用自动编码器模型将影响车辆碰撞的因素(例如天气情况、光照情况等)作为模型的输入,通过解码器重构原始输入,获得输入与输出的最小重构误差计算阈值判断车辆碰撞情况.实验表明,数据经过One Class-SVM模型处理,再使用Autoencoder模型检测获得了比较好的测试结果. 展开更多
关键词 车辆碰撞检测 皮尔逊相关性分析 SMOTE One class-svm Autoencoder
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部