期刊文献+
共找到380篇文章
< 1 2 19 >
每页显示 20 50 100
Boosting cumene hydrogen transfer via a Ru-based porphyrin covalent organic framework for tandem air epoxidation of olefins
1
作者 Dongpo Li Chao Xiong +4 位作者 Qianqian Mao Luying Xi Tianfu Yang Peng Hu Hongbing Ji 《Nano Research》 2026年第1期253-267,共15页
Constructing catalysts featuring an ordered structure,stable performance,and uniformly dispersed catalytic sites is vital for the epoxidation of small-molecular olefins.Here,we design catalysts by tracing the oxidatio... Constructing catalysts featuring an ordered structure,stable performance,and uniformly dispersed catalytic sites is vital for the epoxidation of small-molecular olefins.Here,we design catalysts by tracing the oxidationprocess origin and synthesize a series of highly dispersed metal porphyrin-based covalent organic frameworks(COFs)materials.The aim is to efficiently oxidize the C-H bonds of cumene by air to in-situ generate organic peroxides at a safe concentration,and integrate the multi-step oxidation method of cumene in industry into a one-step method for olefins’epoxidation.The carbonyl-ruthenium COF(Ru-COF-1)exhibits excellent performance,with 98% epoxide selectivity,1221.77 h^(-1) productivity,and over 95% selectivity after 9 cycles for 1-hexene.Analysis of structure-properties-catalytic relationships of Ru-COF-1 shows that,compared with Ru-porphyrins and metal-free COFs,the enhanced reaction performance mainly results from Ru metal introduction,which promotes benzylic proton transfer in cumene.Besides,Ru-COF-1’s porous,ordered structure aids oxygen enrichment,forming active peroxy radicals with the cumene carboncentered radicals formed on the catalyst surface.Ru-H sites then accelerate active oxygen transfer from peroxy radicals,enabling olefin tandem epoxidation.Density functional theory(DFT)calculations verify the reaction mechanism,and this work offers a reference for the design of catalysts for the green,safe,and efficient oxidation of olefins. 展开更多
关键词 porphyrin covalent organic framework dehydrogenation enhancement air oxidation tandem catalysis inert olefins
原文传递
荷兰拟开发可再生甲醇制烯烃技术 被引量:1
2
作者 《石油化工技术与经济》 2025年第3期53-53,共1页
近日,荷兰Blue Circle Olefins公司、英国废品回收公司(Renewi)与荷兰莫尔迪克运输公司等联合启动一项使用废弃物制可再生甲醇、可再生甲醇制烯烃(乙烯/丙烯)项目的可行性研究。该项目获得荷兰企业署TSE资助,旨在利用不适合机械回收的... 近日,荷兰Blue Circle Olefins公司、英国废品回收公司(Renewi)与荷兰莫尔迪克运输公司等联合启动一项使用废弃物制可再生甲醇、可再生甲醇制烯烃(乙烯/丙烯)项目的可行性研究。该项目获得荷兰企业署TSE资助,旨在利用不适合机械回收的废塑料等物质。 展开更多
关键词 Blue Circle Olefins 荷兰
在线阅读 下载PDF
Pd-Catalyzed highly regioselective migratory hydroesterification of internal olefins with formates
3
作者 Junhua Li Tianci Shen +2 位作者 Yahui Zhuang Yu Fu Yian Shi 《Chinese Chemical Letters》 2025年第7期371-375,共5页
Double bonds of internal olefins can be efficiently migrated to the terminal carbons and regioselectively hydroesterified with formates in the presence of Pd(OAc)_(2) and 1,2-DTBPMB under mild reaction conditions,prov... Double bonds of internal olefins can be efficiently migrated to the terminal carbons and regioselectively hydroesterified with formates in the presence of Pd(OAc)_(2) and 1,2-DTBPMB under mild reaction conditions,providing a wide variety of corresponding linear carboxylic esters bearing various functional groups in good yields and>20:1 linear/branch ratios.The reaction is optionally simple and does not need to use CO gas and acid co-catalysts. 展开更多
关键词 PD-CATALYZED Migratory hydroesterification Internal olefins Olefin isomerization FORMATES
原文传递
Identification of stable and selective nickel alloy catalyst for acceptorless dehydrogenation of ethane
4
作者 Guomin Li Teng Li +3 位作者 Bin Wang Yong Ding Xinjiang Cui Feng Shi 《Chinese Journal of Catalysis》 2025年第3期322-332,共11页
Modifying the electronic density of states and the synergistic effect of the active centers by introducing a second metal present an efficient strategy to tune physi/chemi-sorption,probably lead to improving catalytic... Modifying the electronic density of states and the synergistic effect of the active centers by introducing a second metal present an efficient strategy to tune physi/chemi-sorption,probably lead to improving catalytic performances.Herein,bimetallic Ni_(3)Mo/Al_(2)O_(3)catalyst was demonstrated and exhibited over 5 times more active than Pt/Al_(2)O_(3)toward the ethane dehydrogenation(EDH)as well as 2-10 times activity enhancement compared with their monometallic Ni and Mo counterparts and other Ni-based bimetallic nanoparticles.Kinetic studies revealed that the activation energy over Ni_(3)Mo/Al_(2)O_(3)(111 kJ mol^(-1))was much lower than that of Ni(157 kJ mol^(-1))and Mo(171 kJ·mol^(-1)).DFT calculations showed ethane was adsorbed on the Ni or Mo surface in a more parallel configuration,whereas over Ni_(3)Mo it adopted an inclined configuration.This change promoted ethane adsorption and pre-activation of the C-H bond,thereby benefiting the ethane dehydrogenation process on the Ni_(3)Mo surface. 展开更多
关键词 Acceptorless dehydrogenation Bimetallic nanoparticle CATALYST OLEFIN MECHANISM
在线阅读 下载PDF
Preparation and extrusion of ZSM-5 based on biomass templates for enhanced mechanical properties and catalytic pyrolysis performance
5
作者 Meiting Guo Youting Wang +5 位作者 Ziliang Xie Kok bing Tan Fangsong Guo Kang Sun Jianchun Jiang Guowu Zhan 《Chinese Journal of Chemical Engineering》 2025年第4期47-60,共14页
The fabrication of monolithic ZSM-5 catalysts via extrusion is pivotal for industrial catalytic processes;nevertheless,the addition of adhesives might affect their catalytic performance.Herein,the rice husk-derived bi... The fabrication of monolithic ZSM-5 catalysts via extrusion is pivotal for industrial catalytic processes;nevertheless,the addition of adhesives might affect their catalytic performance.Herein,the rice husk-derived bio-SiO_(2),serving as a silicon source and natural adhesive,was introduced in the synthesis and extrusion of ZSM-5 catalysts denoted as BioZSM-5,thereby enhancing their industrial viability and catalytic performance.The f-n-BioZSM-5(obtained by extrusion of n-BioZSM-5)showcased enhanced butene and pentene selectivity,exhibiting robust stability,achieving an impressive 84.8%olefin selectivity(over 10 cycles).The biomass template significantly improved porosity,acidity,and anti-coking properties.Moreover,the f-n-BioZSM-5 exhibited a compressive strength 4.3 times superior to that of f-n-ZSM-5 without using bio-template,achieving better abrasion resistance and enhanced mechanical properties even using 1/3 of the adhesive dosage.These results will provide valuable guidance for developing shaped zeolite catalysts for industrial catalytic pyrolysis applications,especially for the production of olefin from fatty acids. 展开更多
关键词 ZSM-5 BIOMASS OLEFINS Adhesives Mechanical properties
在线阅读 下载PDF
Confining Molecular rhodium phosphine catalysts within liquid-solid hybrid microreactor for olefin hydroformylation
6
作者 Xiaoting Hao Qi Liu +2 位作者 Yuwei Wang Xiaoming Zhang Hengquan Yang 《Chinese Journal of Catalysis》 2025年第6期261-270,共10页
The concept of liquid-solid hybrid catalyst that featuring a truly homogeneous liquid microenvironment together with insoluble solid characteristics has been established recently by our group,which enables us to conve... The concept of liquid-solid hybrid catalyst that featuring a truly homogeneous liquid microenvironment together with insoluble solid characteristics has been established recently by our group,which enables us to conveniently bridge the gap between homo-and heterogeneous catalysis.In this study,we extend this general concept to the confinement of molecular rhodium phosphine complexes,including Rh-TPPTS,Rh-TPPMS and Rh-SXP,for olefin hydroformylation reactions.A series of hybrid catalyst materials consisting a modulated liquid interior([BMIM]NTf_(2),[BMIM]PF_(6),[BMIM]BF_(4) or H_(2)O)and a permeable silica crust were fabricated through our developed Pickering emulsion-based method,showing 9.4–24.2-fold activity enhancement and significantly improved aldehyde selectivity(from 72.2%,61.8%to 86.6%)compared to their biphasic counterparts or traditional supported liquid phase system in the hydroformylation of 1-dodecene.Interestingly,the catalytic efficiency was demonstrated to be tunable by rationally engineering the thickness of porous crust and dimensions of the liquid pool.The thus-attained hybrid catalyst could also successfully catalyze the hydroformylation of a variety of olefin substrates and be recycled without a significant loss of activity for at least seven times. 展开更多
关键词 Immobilization Molecular catalyst Olefin hydroformylation Heterogeneous catalysis Hybrid microreactor
在线阅读 下载PDF
Integrated Fischer-Tropsch synthesis and heterogeneous hydroformylation technologies toward high-value commodities from syngas
7
作者 Ziang Zhao Miao Jiang +6 位作者 Cunyao Li Yihui Li Hejun Zhu Ronghe Lin Shenfeng Yuan Li Yan Yunjie Ding 《Chinese Journal of Catalysis》 2025年第6期16-38,共23页
Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,a... Fischer-Tropsch synthesis(FTS)and hydroformylation are pivotal chemical processes for converting syngas and olefins into valuable hydrocarbons and chemicals.Recent advancements in catalyst design,reaction mechanisms,and process optimization have significantly improved the efficiency,selectivity,and sustainability of these processes.This Account introduces the relevant research activities in the Research Center for Catalysis in Syngas Conversion and Fine Chemicals(DNL0805)of Dalian Institute of Chemical Physics(DICP),Chinese Academy of Sciences.The reactions of interests include FTS,heterogeneous hydroformylation of olefins,alcohol dehydration and oxidation,andα-olefin polymerization,with the emphasis on developing innovative catalysts and processes to address the challenges of traditional processes.Exemplified by the discovery of robust Co-Co_(2)C/AC for FTS and Rh_(1)/POPs-PPh_(3) for heterogeneous hydroformylation of olefins,it demonstrates how lab-scale fundamental understandings on the active sites of catalysts leads to pilot-plant scale-up and finally commercial technologies.Perspectives on the challenges and directions for future developments in these exciting fields are provided. 展开更多
关键词 COMMERCIALIZATION Fischer-Tropsch synthesis Heterogeneous catalysis Olefin hydroformylation Processes development
在线阅读 下载PDF
Fine-tuning of Hofmann-type metal-organic frameworks for highly efficient separation of C_(4) olefins
8
作者 Jun-Xian Chen Xian-Xian Xiao +3 位作者 Libo Li Jinping Li Rui-Biao Lin Xiao-Ming Chen 《Chinese Journal of Structural Chemistry》 2025年第12期32-38,共7页
Separation of ternary C_(4) olefins(n-butene,iso-butene and 1,3-butadiene)is very challenging but crucial in the petrol-chemical industry due to their similar molecular sizes and properties.Herein,to optimize the sepa... Separation of ternary C_(4) olefins(n-butene,iso-butene and 1,3-butadiene)is very challenging but crucial in the petrol-chemical industry due to their similar molecular sizes and properties.Herein,to optimize the separation efficiency for separation of C_(4) olefins,a new Hofmann-type MOF,[Ni(piz)Ni(CN)_(4)](piz=piperazine)-isostructural to the typical one[Ni(pyz)Ni(CN)_(4)](pyz=pyrazine),has been synthesized by a facile method from aqueous solution.The pore size reduction of[Ni(piz)Ni(CN)_(4)](3.62A,in contrast to 3.85A in[Ni(pyz)Ni(CN)_(4)])results in negligible iso-butene(i-C_(4)H_(8))uptake(from 2.92 to 0.04 mmol g^(-1))whereas retaining significant uptake for 1,3-butadiene(1,3-C_(4)H_(6),1.96 mmol g^(-1))and n-butene(n-C_(4)H_(8),1.47 mmol g^(-1)),showing much higher uptake ratios of 1,3-C_(4)H_(6)/i-C_(4)H_(8)(47)and n-C_(4)H_(8)/i-C_(4)H_(8)(35)that outperform most of the benchmark porous materials for separating C_(4) olefins.Breakthrough experiments demonstrate successful separation of high-purity(99.9999%)i-C_(4)H_(8) and 1,3-C_(4)H_(6) from equimolar 1,3-C_(4)H_(6)/i-C_(4)H_(8),n-C_(4)H_(8)/i-C_(4)H_(8) and 1,3-C_(4)H_(6)/n-C_(4)H_(8)/i-C_(4)H_(8) mixtures. 展开更多
关键词 Metal-organic frameworks ISOSTRUCTURAL Gas separation C_(4)olefins Pore tuning
原文传递
Advancements in Thermo and Photothermal CO_(2) Hydrogenation to Light Olefins Using Fe-Based Catalysts:Current Progress and Future Directions
9
作者 Timofey Karnaukhov Blaž Likozar Andrii Kostyniuk 《Carbon Energy》 2025年第10期54-86,共33页
The development of human industry inevitably leads to excessive carbon dioxide(CO_(2))emissions.It can cause critical ecological consequences,primarily global warming and ocean acidification.In this regard,close atten... The development of human industry inevitably leads to excessive carbon dioxide(CO_(2))emissions.It can cause critical ecological consequences,primarily global warming and ocean acidification.In this regard,close attention is paid to the carbon capture,utilization,and storage concept.The key component of this concept is the catalytic conversion of CO_(2)into valuable chemical compounds and fuels.Light olefins are one of the most industrially important chemicals,and their sustainable production via CO_(2)hydrogenation could be a prospective way to reach carbon neutrality.Fe-based materials are widely recognized as effective thermocatalysts and photothermal catalysts for that process thanks to their low cost,high activity,and good stability.This review critically examines the most recent progress in the development and optimization of Fe-based catalysts for CO_(2)hydrogenation into light olefins.Particular attention is paid to understanding the roles of catalyst composition,structural properties,and promoters in enhancing catalytic activity,selectivity,and stability. 展开更多
关键词 CO_(2)hydrogenation heterogeneous catalysts light olefins photothermal catalysis reaction mechanisms
在线阅读 下载PDF
Preparation and Hydrogenation of Dicyclopentadiene-based Cyclic Olefin Copolymers
10
作者 Xiang-Han Zhang Xiao-Hui Mao +4 位作者 Huan Gao Shui-Yuan Luo Zhe Ma Li Pan Yue-Sheng Li 《Chinese Journal of Polymer Science》 2025年第9期1527-1536,I0007,共11页
The design of low-cost and high-performance cyclic olefin copolymers remains challenging.Ethylene copolymers with dicyclopentadiene(DCPD)were prepared using Ph_(2)C(Cp)(Flu)ZrCl_(2)(Cat.1),rac-Et(Ind)_(2)ZrCl_(2)(Cat.... The design of low-cost and high-performance cyclic olefin copolymers remains challenging.Ethylene copolymers with dicyclopentadiene(DCPD)were prepared using Ph_(2)C(Cp)(Flu)ZrCl_(2)(Cat.1),rac-Et(Ind)_(2)ZrCl_(2)(Cat.2),Me_(2)C(Cp)(Flu)ZrCl_(2)(Cat.3)andMe_(2)Si(Ind)_(2)ZrCl_(2)(Cat.4)combined with[Ph_(3)C][B(C_(6)F_(5))_(4)]/iBu_(3)Al.Ni(acac)_(2)/iBu_(3)Al was then used to catalyze the hydrogenation of the intracyclic double bonds of ethylene/DCPD copolymers.The results showed that compared to C_(2) symmetric catalysts(Cat.2 and Cat.4),Cs symmetric catalysts(Cat.1 and Cat.3)facilitated the incorporation of copolymers with higher DCPD.1H-and ^(13)C-NMR spectra indicated that ethylene/DCPD copolymerization occurred via enhancement of the norbornene ring.Additionally,measurement of the reactivity ratios provided further confirmation that the copolymers had random sequence distributions.All these samples demonstrated transmittance values above 90%in the visible wavelength range from 400 nm to 800 nm.By changing the fraction of monomers,the glass transition temperature,refractive index,Young's modulus,and tensile strength of the copolymer increased as the incorporation of DCPD increased,whereas the Abbe number and elongation at break decreased.Compared with ethylene/norbornene and ethylene/tetracyclicdodecene copolymers,ethylene/DCPD copolymers,with excellent optical and mechanical properties,are promising materials. 展开更多
关键词 Cyclic olefin copolymers Coordination polymerization Metallocene catalyst
原文传递
Extended π-conjugated systems by external ligand-assisted C-H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fiuorescence materials
11
作者 Ruike Hu Kangmin Wang +4 位作者 Junxiang Liu Jingxian Zhang Guoliang Yang Liqiu Wan Bijin Li 《Chinese Chemical Letters》 2025年第4期131-138,共8页
The design and synthesis of a novel π-conjugated fiuorescent framework by external ligand-assisted C-H olefination of heterocycles with excellent regioselectivity and broad substrate scope are reported herein.These n... The design and synthesis of a novel π-conjugated fiuorescent framework by external ligand-assisted C-H olefination of heterocycles with excellent regioselectivity and broad substrate scope are reported herein.These novel fiuorescent materials could present full-color-tunable emissions with large Stokes shifts. Furthermore, the protocol provides an opportunity to rapidly screen novel organic single-molecule whitelight materials with high fiuorescence quantum yields. The robust organic and low-cost white lightemitting diodes could rapidly be fabricated using the white-light-emitting material. Experimental data and theoretical calculations indicate that in the white-light dual emission the relatively short wavelength from high-lying singlet state emission and the relatively long wavelength from low-lying singlet state emission. The anti-Kasha dual-emission systems will provide a foundation for the development and application of organic single-molecule white light materials, effectively promoting the development and innovation of luminescent materials. In addition, this method demonstrated its potential application in the synthesis of new near-infrared(NIR) fiuorescence materials with large Stokes shifts based on the olefination of heterocycles. 展开更多
关键词 π-Conjugated fiuorescent framework C—H olefination Organic single-molecule white-light materials HETEROCYCLES NIR fiuorescence materials
原文传递
Recent Advances in CO_(2) Hydrogenation on Fe‐Based Catalysts to Long‐Chainα‐Olefins:Follow or Break Anderson–Schulz–Flory Distribution
12
作者 Zhennan Yang Shiao Gao +4 位作者 Yitong Zhao Zhuoya Wang Lei Hu Yu Fan Zhijie Wu 《Carbon and Hydrogen》 2025年第3期268-285,共18页
With the rapid development of economy,the consumption of fossil fuels and excessive emissions of carbon dioxide(CO_(2))have led to many environmental issues.The thermocatalytic conversion of CO_(2) to high value‐adde... With the rapid development of economy,the consumption of fossil fuels and excessive emissions of carbon dioxide(CO_(2))have led to many environmental issues.The thermocatalytic conversion of CO_(2) to high value‐added chemicals is an effective strategy to meet the need of carbon neutralization.Among them,CO_(2) hydrogenation to light olefins has been well researched so that the selectivity of desired products can exceed the Anderson–Schulz–Flory(ASF)distribution to acquire an extremely high yield.However,although huge progress has been made in CO_(2) hydrogenation to produce long‐chainα‐olefins based on Fe catalysts as well,designing efficient catalysts with promoted C‐O dissociation and C‐C coupling remains challenging.In addition,ASF distribution restrains the selectivity of desired long‐chain products,whereas the approaches to breaking it still face issues.In this review,we focus on the design of Fe‐based catalysts for the synthesis of long‐chainα‐olefins through CO_(2) hydrogenation.We have summarized and analyzed the reaction mechanism,design of catalysts,structure–activity relationship,interaction between Fe and promoters,and strategies to break the ASF distribution.At the same time,the issues faced by CO_(2) hydrogenation to long‐chainα‐olefins are proposed and the possible future solutions are prospected.This review aims to provide a recent development on the design of Fe‐based catalysts for CO_(2) hydrogenation to long‐chainα‐olefins while considering the ASF distribution. 展开更多
关键词 CO_(2)hydrogenation Fe‐based catalysts long‐chainα‐olefins reaction mechanism
在线阅读 下载PDF
First-principles microkinetic simulations revealing the driving effect of zeolite in bifunctional catalysts for the conversion of syngas to olefins
13
作者 Wende Hu Jun Ke +1 位作者 Yangdong Wang Chuanming Wang 《Chinese Journal of Catalysis》 2025年第6期222-233,共12页
Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we t... Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we theoretically addressed the kinetics of the direct STO reaction on typical ZnAl_(2)O_(4)/zeolite catalysts by establishing a complete reaction network,consisting of methanol synthesis and conversion,water gas shift(WGS)reaction,olefin hydrogenation,and other relevant steps.The WGS reaction occurs very readily on ZnAl_(2)O_(4) surface whereas which is less active towards alkane formation via olefin hydrogenation,and the latter can be attributed to the characteristics of the H_(2) heterolytic activation and the weak polarity of olefins.The driving effect of zeolite component towards CO conversion was demonstrated by microkinetic simulations,which is sensitive to reaction conditions like space velocity and reaction temperature.Under a fixed ratio of active sites between oxide and zeolite components,the concept of the“impossible trinity”of high CO conversion,high olefin selectivity,and high space velocity can thus be manifested.This work thus provides a comprehensive kinetic picture on the direct STO conversion,offering valuable insights for the design of each component of bifunctional catalysts and the optimization of reaction conditions. 展开更多
关键词 Syngas to olefins Bifunctional catalysis Microkinetic simulations Driving effect Impossible trinity ZnAl_(2)O_(4)oxide
在线阅读 下载PDF
Strong interaction between Fe and Ti compositions for effective CO_(2)hydrogenation to light olefins
14
作者 Hao Liang Shunan Zhang +4 位作者 Ruonan Zhang Haozhi Zhou Lin Xia Yuhan Sun Hui Wang 《Chinese Journal of Catalysis》 2025年第4期146-157,共12页
Fe-based catalysts are widely used for CO_(2)hydrogenation to light olefins(C_(2–4)=);however,precise regulation of active phases and the balance between intermediate reactions remain significant challenges.Herein,we... Fe-based catalysts are widely used for CO_(2)hydrogenation to light olefins(C_(2–4)=);however,precise regulation of active phases and the balance between intermediate reactions remain significant challenges.Herein,we find that the addition of moderate amounts of Ti forms a strong interaction with Fe compositions,modulating the Fe_(3)O_(4)and Fe_(5)C_(2)contents.Enhanced interaction leads to an increased Fe_(5)C_(2)/Fe_(3)O_(4)ratio,which in turn enhances the adsorption of reactants and intermediates,promoting CO hydrogenation to unsaturated alkyl groups and facilitating C–C coupling.Furthermore,the strong Fe-Ti interaction induces the preferential growth of Fe_(5)C_(2)into prismatic structures that expose the(020),(–112),and(311)facets,forming compact active interfacial sites with Fe_(3)O_(4)nanoparticles.These facet and interfacial effects significantly promote the synergistic coupling of the reverse water gas shift and Fischer-Tropsch reactions.The optimized 3K/FeTi catalyst with the highest Fe_(5)C_(2)/Fe_(3)O_(4)ratio of 3.6 achieves a 52.2%CO_(2)conversion rate,with 44.5%selectivity for C2–4=and 9.5%for CO,and the highest space-time yield of 412.0 mg gcat^(–1)h^(–1)for C_(2–4)=. 展开更多
关键词 CO_(2)hydrogenation Light olefins Strong Fe-Ti interaction Fe_(5)C_(2) Active phase modulation
在线阅读 下载PDF
Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process 被引量:11
15
作者 高新华 张建利 +4 位作者 陈宁 马清祥 范素兵 赵天生 椿范立 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第4期510-516,共7页
Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical prope... Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability. 展开更多
关键词 Zn promoter Fe-based catalyst Light olefin Fischer-Tropsch synthesis Microwave-hydrothermal method
在线阅读 下载PDF
Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction 被引量:17
16
作者 李静 刘粟侥 +3 位作者 张怀科 吕恩静 任鹏举 任杰 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第2期308-315,共8页
The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 ... The ZSM-5 zeolite with an unusual snowflake-shaped morphology was hydrothermally synthesized for the first time,and compared with common ellipsoidal and boat-like shaped samples.These samples were characterized by N2 adsorption-desorption,X-ray fluorescence spectroscopy,scanning electron microscopy,X-ray diffraction,magic angle spinning nuclear magnetic resonance,temperature-programmed desorption of ammonia,and infrared spectroscopy of pyridine adsorption.The results suggest that the BET surface area and SiO2/Al2O3 ratio of these samples are similar,while the snowflake-shaped ZSM-5 zeolite possesses more of the(101) face,and distortion,dislocation,and asymmetry in the framework,resulting in a larger number of acid sites than the conventional samples.Catalysts for the methanol to olefin(MTO) reaction were prepared by loading Ca on the samples.The snowflake-shaped Ca/ZSM-5 zeolite exhibited excellent selectivity for total light olefin(72%) and propene(39%) in MTO.The catalytic performance influenced by the morphology can be mainly attributed to the snowflake-shaped ZSM-5 zeolite possessing distortion,dislocation,and asymmetry in the framework,and lower diffusion limitation than the conventional samples. 展开更多
关键词 ZSM-5 zeolite MODIFICATION Methanol to olefins
在线阅读 下载PDF
Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: A review 被引量:5
17
作者 赵忠奎 葛桂芳 +2 位作者 李伟作 郭新闻 王桂茹 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第5期644-670,共27页
The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape,... The catalytic performance of solid catalysts depends on the properties of the catalytically active sites and their accessibility to reactants, which are significantly affected by the microstructure(morphology, shape, size, texture, and surface structure) and surface chemistry(elemental components and chemical states). The development of facile and efficient methods for tailoring the microstructure and surface chemistry is a hot topic in catalysis. This contribution reviews the state of the art in modulating the microstructure and surface chemistry of carbocatalysts by both bottom‐up and top‐down strategies and their use in the oxidative dehydrogenation(ODH) and direct dehydrogenation(DDH) of hydrocarbons including light alkanes and ethylbenzene to their corresponding olefins, important building blocks and chemicals like oxygenates. A concept of microstructure and surface chemistry tuning of the carbocatalyst for optimized catalytic performance and also for the fundamental understanding of the structure‐performance relationship is discussed. We also highlight the importance and challenges in modulating the microstructure and surface chemistry of carbocatalysts in ODH and DDH reactions of hydrocarbons for the highly‐efficient, energy‐saving,and clean production of their corresponding olefins. 展开更多
关键词 Carbocatalysis MICROSTRUCTURE Surface chemistry MODULATION DEHYDROGENATION OLEFIN
在线阅读 下载PDF
Polymerization Mechanism of α-Linear Olefin 被引量:3
18
作者 邢文国 张长桥 +2 位作者 于萍 刘成卜 魏云鹤 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第1期39-44,I0001,共7页
The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction a... The density functional theory on the level of B3LYP/6-31G was empolyed to study the chain growth mechanism in polymerization process of α-linear olefin in TiCl3/AlEt2Cl catalytic system to synthesize drag reduction agent. Full parameter optimization without symmetry restrictions for reactants, products, the possible transition states, and intermediates was calculated. Vibration frequency was analyzed for all of stagnation points on the potential energy surface at the same theoretical level. The internal reaction coordinate was calculated from the transition states to reactants and products respectively. The results showed as flloes: (i) Coordination compounds were formed on the optimum configuration of TiCl3/AlEt2Cl.(ii) The transition states were formed. The energy di?erence between transition states and the coordination compounds was 40.687 kJ/mol. (iii) Double bond opened and Ti-C(4) bond fractured, and the polymerization was completed. The calculation results also showed that the chain growth mechanism did not essentially change with the increase of carbon atom number of α-linear olefin. From the relationship between polymerization activation energy and carbon atom number of the α-linear olefin, it can be seen that the α-linear olefin monomers with 6-10 carbon atoms had low activation energy and wide range. It was optimum to synthesize drag reduction agent by polymerization. 展开更多
关键词 Density functional theory Polymerization mechanism α-Linear olefin Drag reduction agent Ziegler-Natta catalyst
在线阅读 下载PDF
阳离子树脂催化罗汉柏木烯异构化的研究 被引量:2
19
作者 陈君 王也 朱凯 《应用化工》 CAS CSCD 北大核心 2018年第3期456-459,共4页
以阳离子交换树脂催化异构罗汉柏木烯,制备以Olefin B为主的异构化产物。对阳离子交换树脂进行筛选,确定大孔强酸性阳离子交换树脂HND-8对罗汉柏木烯的异构化有较好的催化活性与选择性;并对HND-8树脂催化下罗汉柏木烯的异构化工艺进行研... 以阳离子交换树脂催化异构罗汉柏木烯,制备以Olefin B为主的异构化产物。对阳离子交换树脂进行筛选,确定大孔强酸性阳离子交换树脂HND-8对罗汉柏木烯的异构化有较好的催化活性与选择性;并对HND-8树脂催化下罗汉柏木烯的异构化工艺进行研究,得到最佳的工艺条件为:HND-8用量为罗汉柏木烯质量的5%,冰醋酸与罗汉柏木烯的质量比1∶2,反应温度80℃,反应时间6 h。在此条件下,Olefin B的含量为45.5%,产率为65.0%;催化剂重复使用性能良好,使用6次产物中Olefin B的得率未有明显下降。采用FTIR对催化剂进行表征。 展开更多
关键词 阳离子树脂 罗汉柏木烯 异构化 OLEFIN B OLEFIN D α、β-花柏烯
在线阅读 下载PDF
烯式吡虫啉(olefin IMI)光解及其光解产物研究 被引量:1
20
作者 葛峰 单正军 +2 位作者 戴亦军 陈婷 袁生 《生态与农村环境学报》 CAS CSSCI CSCD 北大核心 2009年第2期103-106,共4页
烟碱类杀虫剂吡虫啉(imidacloprid,IMI)在环境中可代谢为生物活性提高10倍的烯式吡虫啉(olefin IMI)。研究了olefin IMI的光稳定性、光解动力学和光解代谢途径。结果表明:olefin IMI在避光条件下较为稳定,室温下放置400d后,olefin IMI... 烟碱类杀虫剂吡虫啉(imidacloprid,IMI)在环境中可代谢为生物活性提高10倍的烯式吡虫啉(olefin IMI)。研究了olefin IMI的光稳定性、光解动力学和光解代谢途径。结果表明:olefin IMI在避光条件下较为稳定,室温下放置400d后,olefin IMI含量仅减少3%;而在室内模拟日光条件下,olefin IMI易于分解,光解反应符合一级动力学方程(r>0.99),半衰期为4d。olefin IMI的光解反应存在2条主要途径:一是羟基化生成4,5-二羟基化吡虫啉,该产物进一步氧化断裂药效基团硝基亚胺基生成羰基化产物;二是直接脱去硝基基团生成胍基产物。 展开更多
关键词 烯式吡虫啉(olefin IMI) 光解 代谢途径
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部