Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the ...Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.展开更多
The pore structure and oil content of shales have an important influence on the oil mobility and enrichment.In this study,the lacustrine shale samples from the Qingshankou Formation(Q1)of Songliao Basin were selected....The pore structure and oil content of shales have an important influence on the oil mobility and enrichment.In this study,the lacustrine shale samples from the Qingshankou Formation(Q1)of Songliao Basin were selected.TOC,pyrolysis,XRD and nitrogen adsorption were performed on the original and extracted shale samples.Then the influence of mineral composition and organic matter(OM)on the development of nano-scale pore,the oil phase states and mobility were analyzed.The Q1 shale samples can be sub-divided into three types according to the isotherm characteristics.Type A samples are characterized by high kerogen content,with oil mainly existing in the free phase state.Type B samples are characterized by medium kerogen content,oil mainly exists in the absorbed phase state.Type C samples are characterized by low kerogen content,with trace oil found in the absorbed phase state.Nano-scale organic pores are well developed in the Q1 Formation.Oil is primarily found in the pore spaces with diameters less than 10 nm,this being the pore size threshold for mobile shale oil.When TOC>2.0 wt%and EOM>1.0 wt%,Q1 Formation shale oil mobility is high,resulting in prospective drilling targets.展开更多
Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME- enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance th...Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME- enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance the performance of conventional waterflood. When DME is injected into the reservoir and contacts the oil, the first-contact miscibility process occurs, which leads to oil swelling and viscosity reduction. The reduction in oil density and viscosity improves oil mobility and reduces residual oil saturation, enhancing oil production. A numerical study based on compositional simulation has been developed to describe the phase behavior in the DEW model. An accurate compositional model is imperative because DME has a unique advantage of solubility in both oil and water. For DEW, oil recovery increased by 34% and 12% compared to conventional waterflood and CO2 flood, respectively. Compositional modeling and simulation of the DEW process indicated the unique solubility effect of DME on EOR performance.展开更多
An accurate evaluation of the shale oil mobility is crucial to its cost-effective exploitation.This study presents a method to assess shale oil mobility by integrating the pore structure and oil states distributions.F...An accurate evaluation of the shale oil mobility is crucial to its cost-effective exploitation.This study presents a method to assess shale oil mobility by integrating the pore structure and oil states distributions.First,a set of three discrete organic extracts(EOM-A,B and C)were obtained by sequential extraction.The relationships among the EOMs and the oil states were inferred from the group compositions and fluorescence properties of the produced shale oil(free state).The results showed that EOMs A and B represent free oil in the open and closed pores,respectively,while the EOM-C represents adsorbed oil.Then,NMR T_(1)-T_(2)map is used to determine the T_(2-cutoff)values that indicate the pore size ranges of different oil states.Free oil resides mainly in larger pore space(T_(2)>0.5 ms),while the adsorbed oil in smaller pore space(0.2 ms<T_(2)<0.5 ms).Finally,the ratio of free to adsorbed oil(F/A)>0.5 and T_(2-cutoff)>1.0 ms suggest that the free oil in connected pores has the highest mobility.This work can provide a reference for evaluating the shale oil potential and prospectivity in other regions.展开更多
Shale oil occurs in free state (including condensate state), adsorption state (adsorbed on kerogen and mineral particles) and dissolved state (dissolved in natural gas, residual water, etc.) in shales and adjace...Shale oil occurs in free state (including condensate state), adsorption state (adsorbed on kerogen and mineral particles) and dissolved state (dissolved in natural gas, residual water, etc.) in shales and adjacent layers. The characterization of the occurrence of different hydrocarbons in shale oil, especially the quantitative separation of free hydrocarbons (mobile oil), has been the current focus of shale oil research. Taken the shale oil from the Muli coalfield in Qilian Mountain as an example, this work extracted shale samples with organic solvents of different polarity to obtain different occurrence states of hydrocarbons in the oil-bearing shale and to reveal the compositional differences of the hydrocarbons. The result may provide new geochemical information for the occurrence and mobility of shale oil.展开更多
Comparative analyses of petroleum generation potential,reservoir volume,frackability,and oil mobility were conducted on 102 shale cores from the Dongpu Depression.Results show the shale has high organic matter content...Comparative analyses of petroleum generation potential,reservoir volume,frackability,and oil mobility were conducted on 102 shale cores from the Dongpu Depression.Results show the shale has high organic matter contents composed of oil-prone type I and type II kerogens within the oil window.Various types of pores and fractures exist in the shale,with a porosity of up to 14.9%.The shale has high brittle mineral contents,extensive fractures,and high potential for oil mobility due to high seepage capacity and overpressure.Although the petroleum generation potential of the shale at Well PS18-8 is relatively greater than that at Well PS18-1,oil content of the latter is greater due to the greater TOC.The porosity and fracture density observed in Well PS18-1 are greater and more conducive to shale oil enrichment.Although the shales in Wells PS18-1 and PS18-8 have similar brittle mineral contents,the former is more favorable for anthropogenic fracturing due to a higher preexisting fracture density.Besides,the shale at Well PS18-1 has a higher seepage capacity and overpressure and therefore a higher oil mobility.The fracture density and overpressure play key roles in shale oil enrichment.展开更多
A series of spontaneous imbibition(SI)tests of tight oil were performed,together with oil distribution scans by computed tomography(CT)and nuclear magnetic resonance(NMR).Thus,the best surfactants to optimize the SI e...A series of spontaneous imbibition(SI)tests of tight oil were performed,together with oil distribution scans by computed tomography(CT)and nuclear magnetic resonance(NMR).Thus,the best surfactants to optimize the SI effect were obtained,the basic requirements to surfactants for efficient SI were determined,and the oil mobilization by SI revealed.The results show that anionic surfactants significantly outperform non-ionic,cationic,and zwitterionic ones in SI process.Excellent systems can be further obtained by mixing anionic surfactants with others(e.g.1:1 mixtures of AES:EHSB).The requirements to interfacial properties of surfactants for achieving efficient SI at permeabilities of 0.05,0.5,and 5.0 mD are as follows:10~0 mN/m,<40°;10-1-10~0 mN/m,<55°;and 10-1-10~0 mN/m,<70°,respectively.Although a high oil recovery of 38.5%by SI was achieved in small cylindrical cores(φ2.5 cm×3.0 cm),the joint SI and CT tests in larger,cube-shaped cores(5.0 cm×5.0 cm×5.0 cm)showed that the SI process could only remove the oil from the outermost few millimeters of the cores with permeabilities of 0.05 and 0.1 mD,indicating the great difficulty encountered for their development.The NMR showed that the SI treatment preferentially removed oil from smaller pores rather than medium or large pores.展开更多
The present research is to experimentally study the joint effects of external pressure and vibratory excitations of low frequency on oil slug mobilization and flow in a capillary model.During and after the oil slug mo...The present research is to experimentally study the joint effects of external pressure and vibratory excitations of low frequency on oil slug mobilization and flow in a capillary model.During and after the oil slug mobilization,the flow phenomena and pressure drop variation across the model are investigated.The distance travelled by the oil slug subjected to various external pressure and vibratory excitations are also studied.The experimental results obtained indicate that the external vibratory excitation acting on the model has positive effect on the flow and mobilization of the oil slug in the model.It is found in the research,with the application of the excitation,the contact angle between the oil slug and tube-wall is changed;the maximum pressure required to mobilize the oil slug is reduced accordingly;and the oil slug travel distance is increased in comparing with that without external excitations.This research contributes to the comprehension of improved liquid mobilization in porous media under the application of external excitations.The finding of the research is significant for studying the two-phase liquid flow in porous media subjected to external excitations and provides insights for Enhanced Oil Recovery with waterflooding and vibratory stimulations.展开更多
This research studies the motion of immiscible two-phase liquid flow in a capillary tube through a numerical approach employing the volume of fluid method,for simulating the core-annular flow and water flooding in oil...This research studies the motion of immiscible two-phase liquid flow in a capillary tube through a numerical approach employing the volume of fluid method,for simulating the core-annular flow and water flooding in oil reservoirs of porous media.More specifically,the simulations are a representation of water flooding at a pore scale.A capillary tube model is established with ANSYS Fluent and verified.The numerical results matches well with the existing data available in the literature.Penetration of a less viscous liquid in a liquid of higher viscosity and the development of a residual wetting film of the higher viscosity liquid are thoroughly investigated.The effects of Capillary number,Reynolds Number and Viscosity ratio on the residual wetting film are studied in detail,as the thickness is directly related to the residual oil left in the porous media after water flooding.It should be noticed that the liquids considered in this research can be any liquids of different viscosity not necessarily oil and water.The results of this study can be used as guidance in the field of water flooding.展开更多
基金Supported by Leading Talent Program of Autonomous Region(2022TSYCLJ0070)PetroChina Prospective and Basic Technological Project(2021DJ0108)Natural Science Foundation for Outstanding Young People in Shandong Province(ZR2022YQ30).
文摘Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.
基金financially supported by the National Natural Science Foundation of China(No.41972156)the Science and Technology Project of Heilongjiang Province(No.2020ZX05A01)
文摘The pore structure and oil content of shales have an important influence on the oil mobility and enrichment.In this study,the lacustrine shale samples from the Qingshankou Formation(Q1)of Songliao Basin were selected.TOC,pyrolysis,XRD and nitrogen adsorption were performed on the original and extracted shale samples.Then the influence of mineral composition and organic matter(OM)on the development of nano-scale pore,the oil phase states and mobility were analyzed.The Q1 shale samples can be sub-divided into three types according to the isotherm characteristics.Type A samples are characterized by high kerogen content,with oil mainly existing in the free phase state.Type B samples are characterized by medium kerogen content,oil mainly exists in the absorbed phase state.Type C samples are characterized by low kerogen content,with trace oil found in the absorbed phase state.Nano-scale organic pores are well developed in the Q1 Formation.Oil is primarily found in the pore spaces with diameters less than 10 nm,this being the pore size threshold for mobile shale oil.When TOC>2.0 wt%and EOM>1.0 wt%,Q1 Formation shale oil mobility is high,resulting in prospective drilling targets.
基金supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) of the Ministry of Trade, Industry, & Energy, Republic of Korea (No. 20152520100760)
文摘Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME- enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance the performance of conventional waterflood. When DME is injected into the reservoir and contacts the oil, the first-contact miscibility process occurs, which leads to oil swelling and viscosity reduction. The reduction in oil density and viscosity improves oil mobility and reduces residual oil saturation, enhancing oil production. A numerical study based on compositional simulation has been developed to describe the phase behavior in the DEW model. An accurate compositional model is imperative because DME has a unique advantage of solubility in both oil and water. For DEW, oil recovery increased by 34% and 12% compared to conventional waterflood and CO2 flood, respectively. Compositional modeling and simulation of the DEW process indicated the unique solubility effect of DME on EOR performance.
基金supported by the National Natural Science Foundation of China(Grant No.41972156)the Science and Technology Project of Heilongjiang Province(Grant No.2020ZX05A01).
文摘An accurate evaluation of the shale oil mobility is crucial to its cost-effective exploitation.This study presents a method to assess shale oil mobility by integrating the pore structure and oil states distributions.First,a set of three discrete organic extracts(EOM-A,B and C)were obtained by sequential extraction.The relationships among the EOMs and the oil states were inferred from the group compositions and fluorescence properties of the produced shale oil(free state).The results showed that EOMs A and B represent free oil in the open and closed pores,respectively,while the EOM-C represents adsorbed oil.Then,NMR T_(1)-T_(2)map is used to determine the T_(2-cutoff)values that indicate the pore size ranges of different oil states.Free oil resides mainly in larger pore space(T_(2)>0.5 ms),while the adsorbed oil in smaller pore space(0.2 ms<T_(2)<0.5 ms).Finally,the ratio of free to adsorbed oil(F/A)>0.5 and T_(2-cutoff)>1.0 ms suggest that the free oil in connected pores has the highest mobility.This work can provide a reference for evaluating the shale oil potential and prospectivity in other regions.
基金funded by the Science and Technology Innovation Fund of Petro China(grant No.2014D-5006-0105)the National Natural Science Foundation of China(grant No.41273066)
文摘Shale oil occurs in free state (including condensate state), adsorption state (adsorbed on kerogen and mineral particles) and dissolved state (dissolved in natural gas, residual water, etc.) in shales and adjacent layers. The characterization of the occurrence of different hydrocarbons in shale oil, especially the quantitative separation of free hydrocarbons (mobile oil), has been the current focus of shale oil research. Taken the shale oil from the Muli coalfield in Qilian Mountain as an example, this work extracted shale samples with organic solvents of different polarity to obtain different occurrence states of hydrocarbons in the oil-bearing shale and to reveal the compositional differences of the hydrocarbons. The result may provide new geochemical information for the occurrence and mobility of shale oil.
基金This study was fnancially supported by the China Postdoctoral Science Foundation(2019M660054)Science Foundation of China University of Petroleum(Beijing)(2462019BJRC005)+3 种基金Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-01-05)Natural Science Foundation of China(41872148,41872128)NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-02)the Science Projects of the Sinopec Zhongyuan Oilfeld Company(P15022).
文摘Comparative analyses of petroleum generation potential,reservoir volume,frackability,and oil mobility were conducted on 102 shale cores from the Dongpu Depression.Results show the shale has high organic matter contents composed of oil-prone type I and type II kerogens within the oil window.Various types of pores and fractures exist in the shale,with a porosity of up to 14.9%.The shale has high brittle mineral contents,extensive fractures,and high potential for oil mobility due to high seepage capacity and overpressure.Although the petroleum generation potential of the shale at Well PS18-8 is relatively greater than that at Well PS18-1,oil content of the latter is greater due to the greater TOC.The porosity and fracture density observed in Well PS18-1 are greater and more conducive to shale oil enrichment.Although the shales in Wells PS18-1 and PS18-8 have similar brittle mineral contents,the former is more favorable for anthropogenic fracturing due to a higher preexisting fracture density.Besides,the shale at Well PS18-1 has a higher seepage capacity and overpressure and therefore a higher oil mobility.The fracture density and overpressure play key roles in shale oil enrichment.
基金the National Natural Science Foundation of China(Grant No.52474071)for their financial support。
文摘A series of spontaneous imbibition(SI)tests of tight oil were performed,together with oil distribution scans by computed tomography(CT)and nuclear magnetic resonance(NMR).Thus,the best surfactants to optimize the SI effect were obtained,the basic requirements to surfactants for efficient SI were determined,and the oil mobilization by SI revealed.The results show that anionic surfactants significantly outperform non-ionic,cationic,and zwitterionic ones in SI process.Excellent systems can be further obtained by mixing anionic surfactants with others(e.g.1:1 mixtures of AES:EHSB).The requirements to interfacial properties of surfactants for achieving efficient SI at permeabilities of 0.05,0.5,and 5.0 mD are as follows:10~0 mN/m,<40°;10-1-10~0 mN/m,<55°;and 10-1-10~0 mN/m,<70°,respectively.Although a high oil recovery of 38.5%by SI was achieved in small cylindrical cores(φ2.5 cm×3.0 cm),the joint SI and CT tests in larger,cube-shaped cores(5.0 cm×5.0 cm×5.0 cm)showed that the SI process could only remove the oil from the outermost few millimeters of the cores with permeabilities of 0.05 and 0.1 mD,indicating the great difficulty encountered for their development.The NMR showed that the SI treatment preferentially removed oil from smaller pores rather than medium or large pores.
文摘The present research is to experimentally study the joint effects of external pressure and vibratory excitations of low frequency on oil slug mobilization and flow in a capillary model.During and after the oil slug mobilization,the flow phenomena and pressure drop variation across the model are investigated.The distance travelled by the oil slug subjected to various external pressure and vibratory excitations are also studied.The experimental results obtained indicate that the external vibratory excitation acting on the model has positive effect on the flow and mobilization of the oil slug in the model.It is found in the research,with the application of the excitation,the contact angle between the oil slug and tube-wall is changed;the maximum pressure required to mobilize the oil slug is reduced accordingly;and the oil slug travel distance is increased in comparing with that without external excitations.This research contributes to the comprehension of improved liquid mobilization in porous media under the application of external excitations.The finding of the research is significant for studying the two-phase liquid flow in porous media subjected to external excitations and provides insights for Enhanced Oil Recovery with waterflooding and vibratory stimulations.
文摘This research studies the motion of immiscible two-phase liquid flow in a capillary tube through a numerical approach employing the volume of fluid method,for simulating the core-annular flow and water flooding in oil reservoirs of porous media.More specifically,the simulations are a representation of water flooding at a pore scale.A capillary tube model is established with ANSYS Fluent and verified.The numerical results matches well with the existing data available in the literature.Penetration of a less viscous liquid in a liquid of higher viscosity and the development of a residual wetting film of the higher viscosity liquid are thoroughly investigated.The effects of Capillary number,Reynolds Number and Viscosity ratio on the residual wetting film are studied in detail,as the thickness is directly related to the residual oil left in the porous media after water flooding.It should be noticed that the liquids considered in this research can be any liquids of different viscosity not necessarily oil and water.The results of this study can be used as guidance in the field of water flooding.