Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different...Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance.展开更多
The control problem for the multivariable and nonlinear dynamics of unmanned aerial vehicles and micro-satellites is solved with the use of a flatness-based control approach which is implemented in successive loops.Th...The control problem for the multivariable and nonlinear dynamics of unmanned aerial vehicles and micro-satellites is solved with the use of a flatness-based control approach which is implemented in successive loops.The state-space model of(i)unmanned aerial vehicles and(ii)micro-satellites is separated into two subsystems,which are connected between them in cascading loops.Each one of these subsystems can be viewed independently as a differentially flat system and control about it can be performed with inversion of its dynamics as in the case of input–output linearized flat systems.The state variables of the second subsystem become virtual control inputs for the first subsystem.In turn,exogenous control inputs are applied to the first subsystem.The whole control method is implemented in two successive loops and its global stability properties are also proven through Lyapunov stability analysis.The validity of the control method is confirmed in two case studies:(a)control and trajectories tracking for the autonomous octocopter,(ii)control of the attitude dynamics of micro-satellites.展开更多
基金supported by the National Natural Science Foundation of China(No.11972190).
文摘Rotor-to-rotor interaction among neighboring rotors of a multirotor has great significance for aerodynamically efficient multirotor design. Current research is conducted to analyze aerodynamic performance of different octocopter configurations amid hover and forward flight. Conventional and coaxial configurations are studied and a hybrid configuration is also proposed to rectify the disadvantages associated with the earlier two. Comparison is carried out for the aforementioned configurations along with comparison of coaxial and hybrid octocopters with bigger diameter rotors in the same confined space for high thrust requirement missions. Vertical spacing of coaxial configuration is also studied. Virtual Blade Method (VBM) is considered herein due to its great computational efficiency. The results show that there are 11.89% and 14.22% loss in thrust for coaxial octocopter compared to conventional and hybrid configurations with normal size rotors and 15.61% loss compared to hybrid configuration with bigger rotors in hover, whereas coaxial square configuration performs the worst in forward flight with a lift loss of 9.1%, 14.77% and 18.8% compared to coaxial diamond, conventional and hybrid configurations with normal size rotors and 9.96% and 17.82% loss compared to coaxial diamond and hybrid configurations with bigger rotors. Combined FM shows that hybrid configuration outperforms other octocopter configurations in overall aerodynamic performance.
文摘The control problem for the multivariable and nonlinear dynamics of unmanned aerial vehicles and micro-satellites is solved with the use of a flatness-based control approach which is implemented in successive loops.The state-space model of(i)unmanned aerial vehicles and(ii)micro-satellites is separated into two subsystems,which are connected between them in cascading loops.Each one of these subsystems can be viewed independently as a differentially flat system and control about it can be performed with inversion of its dynamics as in the case of input–output linearized flat systems.The state variables of the second subsystem become virtual control inputs for the first subsystem.In turn,exogenous control inputs are applied to the first subsystem.The whole control method is implemented in two successive loops and its global stability properties are also proven through Lyapunov stability analysis.The validity of the control method is confirmed in two case studies:(a)control and trajectories tracking for the autonomous octocopter,(ii)control of the attitude dynamics of micro-satellites.