The Yangtze-Huaihe River Valley(YHRV)experienced a record-breaking mei-yu season during the summer of 2020,prompting investigation into the role of regional ocean-atmosphere coupling in simulating this extreme event.T...The Yangtze-Huaihe River Valley(YHRV)experienced a record-breaking mei-yu season during the summer of 2020,prompting investigation into the role of regional ocean-atmosphere coupling in simulating this extreme event.Through comparative analysis of regional ocean-atmosphere coupled(CP)and atmosphere-only(WRF)simulations,the aim of this study was to elucidate the mechanisms underlying this phenomenon.Results indicate that CP effectively reproduced the observed sea surface temperature spatial distribution and its daily variation during the period from 25 June to 25 July 2020,and notably reduced the wet biases over the YHRV when compared to WRF simulations.This improvement in representation was manifested in the observed rainfall spatial distribution and daily variability.The wet biases simulated by WRF were associated with a stronger 200-hPa westerly jet and a more westward-positioned western North Pacific subtropical high(WNPSH)with more intense 500-hPa winds and a stronger 850-hPa circulation.However,these biases were significantly reduced in CP simulations.Mechanism analysis revealed that regional ocean-atmosphere coupling over the western Northwest Pacific influenced surface turbulent heat fluxes and atmospheric instability,thereby modulating the intensity and position of the WNPSH and associated circulation subsystems at different levels.Moreover,adjustments in land-sea thermal contrast induced by ocean-atmosphere coupling impacted YHRV precipitation by altering East Asian circulation systems.These findings highlight the significant role of regional ocean-atmosphere coupling in enhancing the simulation and understanding of extreme mei-yu events over East Asia.展开更多
A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atm...A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atmosphere coupling of different regions during these processes. The control run successfully simulates the Pacific long-term variability, whose leading modes are the Pacific (inter) Decadal Oscillation (PDO) and the North Pacific mode (NPM). Furthermore, three numerical experiments are conducted, shutting down the ocean-atmosphere coupling in the North Pacific, the tropical Pacific, and the South Pacific, respectively. The results show that regional ocean-atmosphere coupling is not only important to the strength of local long-term SST variability but also has an influence on the variability further afield. In both the tropical Pacific and North Pacific, this local effect is the main control, which is much more obvious in the tropical regions. The existence of the PDO is extremely dependent on the coupling in the tropical Pacific. However, extratropical coupling, in particular that in the North Pacific, is also important to form its spatial pattern and strengthen the variability in some tropical areas. For the NPM, its existence is primarily determined by the coupling in the North Pacific.展开更多
Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling ...Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.展开更多
To address the deficiencies in comprehensive surface contamination prevention strategies within China's nitrate-affected regions,this research innovatively proposes the DITAPH model-a systematic framework integrat...To address the deficiencies in comprehensive surface contamination prevention strategies within China's nitrate-affected regions,this research innovatively proposes the DITAPH model-a systematic framework integrating groundwater nitrate vulnerability assessment and Nitrate Vulnerable Zones(NVZs)delineation through optimization of hydrogeological parameters.Based on detailed hydrogeological and hydrochemical investigations,the DITAPH model was applied in the plain areas of Quanzhou to evaluate its applicability.The model selected hydrogeological parameters(depth of groundwater,lithology of the vadose zone,topographic slope,aquifer water yield property),one climatic parameter(precipitation),and two anthropogenic parameters(land use type and population density)as assessment indicators.The results of the groundwater nitrate vulnerability assessment showed that the low,relatively low,relatively high,and high groundwater nitrate vulnerability zones in the study area accounted for 5.96%,35.44%,53.74%and 4.86%of the total area,respectively.Groundwater nitrate vulnerability was most strongly influenced by human activities,followed by groundwater depth and topographic slope.The high vulnerability zone is mainly affected by domestic and industrial wastewater,whereas the relatively high groundwater nitrate vulnerability zone is primarily influenced by agricultural activities.Validation of the DITAPH model revealed a significant positive correlation between the DITAPH index(DI)and nitrate concentration(ρ(NO3−)).The results of the NVZs delineated by the DITAPH model are reliable and can serve as a tool for water resource management planning,guiding the development of targeted measures in the NVZs to prevent groundwater contamination.展开更多
Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the li...Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the linear scaling relationship,thereby exhibiting large overpotentials.In the lattice oxygen mechanism(LOM),the OER can be enhanced by enabling direct O_(2)formation.However,this enhancement is accompanied by the generation of oxygen vacancies,which presents a significant challenge to the long-term stability of LOMOER,particularly when operating at high current densities.Recently,the*O-*O coupling mechanism(OCM)has emerged as a promising alternative;it not only breaks the linear scaling relationship but also ensures catalytic stability.This review encapsulates the cutting-edge advancements in electrocatalysts that are grounded in the OCM,offering a detailed interpretation on the foundational principles guiding the design of OCM-OER catalysts.It also highlights recent theoretical investigations combining machine learning(ML)with density functional theory(DFT)calculations to reveal OER mechanisms.At the end of this review,the challenges and opportunities associated with OCM-OER electrocatalysts are discussed.展开更多
Since the United Nations launched the Sustainable Development Goals(SDGs)in 2015,global implementation has steadily advanced,yet prominent challenges persist.Progress has been uneven across regions and countries,with ...Since the United Nations launched the Sustainable Development Goals(SDGs)in 2015,global implementation has steadily advanced,yet prominent challenges persist.Progress has been uneven across regions and countries,with Tajikistan representing a typical example of such disparities.Based on 81 SDG indicators for Tajikistan from 2001 to 2023,this study applied a three-level coupling network framework:at the microscale,it identified synergies and trade-offs between indicators;at the mesoscale,it examined the strength and direction of linkages within four SDG-related components(society,finance,governance,and environment);and at the global level,it focused on the overall SDG interlinkages.Spearman’s rank correlation,sliding window method,and topological properties were employed to analyze the coupling dynamics of SDGs.Results showed that over 70.00%of associations in the global SDG network were of medium-to-low intensity,alongside extremely strong ones(|r|value approached 1.00,where r is the correlation coefficient).SDG interactions were generally limited,with stable local synergy clusters in core livelihood sectors.Network modularity fluctuated,reflecting a cycle of differentiation,integration,and fragmentation,while coupling efficiency varied with the external environment.Each component exhibited distinct functional characteristics.The social component maintained high connectivity through the“poverty alleviation-education-healthcare”loop.The environmental component shifted toward coordinated eco-economic governance.The governance-related component broke interdepartmental barriers,while the financial component showed weak links between resource-based indicators and consumption/employment indicators.Tajikistan’s SDG coupling evolved through three phases:survival-oriented(2001–2012),policy integration(2013–2018),and shock adaptation(2019–2023).These phases were driven by policy changes,resource industries,governance optimization,and external factors.This study enriches the analytical framework for understanding the dynamic coupling of SDGs in mountainous resource-dependent countries and provides empirical evidence to support similar countries in formulating phase-specific SDG promotion strategies.展开更多
In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitud...In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.展开更多
A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed...A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed with these models. While the history of model development is briefly reviewed, emphasis has been put on the achievements made in the last five years. Advances in model development are described along with a summary on scientific issues addressed by using these models. The focus of the review is the climate ocean models and the associated coupled models, including both global and regional models, developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The progress of either coupled model development made by other institutions or climate modeling using internationally developed models also is reviewed.展开更多
El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive an...El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive and intensive international efforts have been devoted to coupled model developments for ENSO studies.A hierarchy of coupled ocean-atmo sphere models has been formulated;in terms of their complexity,they can be categorized into intermediate coupled models(ICMs),hybrid coupled models(HCMs),and fully coupled general circulation models(CGCMs).ENSO modeling has made significant progress over the past decades,reaching a stage where coupled models can now be used to successfully predict ENSO events 6 months to one year in advance.Meanwhile,ENSO exhibits great diversity and complexity as observed in nature,which still cannot be adequately captured by current state-of-the-art coupled models,presenting a challenge to ENSO modeling.We primarily reviewed the long-term efforts in ENSO modeling continually and steadily made at different institutions in China;some selected representative examples are presented here to review the current status of ENSO model developments and applications,which have been actively pursued with noticeable progress being made recently.As ENSO simulations are very sensitive to model formulations and process representations etc.,dedicated efforts have been devoted to ENSO model developments and improvements.Now,different ocean-atmosphere coupled models have been available in China,which exhibit good model performances and have already had a variety of applications to climate modeling,including the Coupled Model Intercomparison Project Phase 6(CMIP6).Nevertheless,large biases and uncertainties still exist in ENSO simulations and predictions,and there are clear rooms for their improvements,which are still an active area of researches and applications.Here,model performances of ENSO simulations are assessed in terms of advantages and disadvantages with these differently formulated coupled models,pinpointing to the areas where they need to be further improved for ENSO studies.These analyses provide valuable guidance for future improvements in ENSO simulations and predictions.展开更多
This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulat...This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the ?rst two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Paci?c in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, a?ected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Paci?c. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
In this paper, ocean-atmosphere coupled regimes are identified on the basis of SVD analysis, cluster analysis and composite analysis. The coupled regimes in cold seasons are identified as the clusters of the ocean-atm...In this paper, ocean-atmosphere coupled regimes are identified on the basis of SVD analysis, cluster analysis and composite analysis. The coupled regimes in cold seasons are identified as the clusters of the ocean-atmosphere coupled states in a low dimensional phase space spanned by the first four SVD modes. Three coupled regimes are found. The first two coupled regimes reflect the ENSO episodes and the accompanying PNA patterns. The third regime, i.e., EAWM regime, is characterized by the strong EAWM activity and the specific SST anomaly. The composite analysis gives further evidences to the identification of EAWM regime and also demonstrates the dynamical process of its formation. The anomaly pattern of the tropical Pacific SSTA in the strong EAWM year differs significantly from that of the La Nina year.展开更多
Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modelin...Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), have been working to develop a global OGCM and a global coupled ocean-atmosphere general circulation modei (CGCM). Prom the original flux anomaly-coupling modei developed in the beginning of the 1990s to the latest directly-coupling modei, LASG scientists have developed four global coupled GCMs. This study summarizes the development history of these models and describes the third and fourth coupled GCMs and selected applications. Strengths and weaknesses of these models are highlighted.展开更多
In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with t...In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with that bythe corresponding IAP AGCM which uses the climatic sea surface temperature as the boundary condition in 25 yearintegrations.The mean climatic states of January and July simulated by IAP CGCM are in good agreement with that by IAPAGCM, i.e., no serious 'climate drift' occurs in the CGCM simulation. A comparison of the results from AGCM andCGCM indicates that the standard deviation of the monthly averaged sea level pressure simulated by IAP CGCM ismuch greater than that by IAP AGCM in tropical region. In addition, both Southern Oscillation (SO) and NorthAtlantic Oscillation (NAO) can be found in the CGCM simulation for January, but these two oscillations do not existin the AGCM simulation.The interannual variability of climate may be classified into two typest one is the variation of the annual mean,another is the variation of the annual amplitude. The ocean-atmosphere interaction mainly increases the first type ofvariability. By means of the rotated EOF, the most important patterns corresponding to the two types of interannualvariability are found to have different spatial and temporal characteristics.展开更多
This study revises Weare's latent heat parameterization scheme and conducts an associated theoretic analysis. The revised Weare's scheme is found to present potentially better results than Zebiak's scheme. The Zebi...This study revises Weare's latent heat parameterization scheme and conducts an associated theoretic analysis. The revised Weare's scheme is found to present potentially better results than Zebiak's scheme. The Zebiak-Cane coupled ocean-atmosphere model, initialized by the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis of wind stress anomaly at 925 hPa, is referred to as the ZCW coupled model. The atmosphere models of the ZCW coupled model that use Zebiak's scheme and the revised Weare's scheme are referred to as the ZCW0 and ZCWN atmosphere models, respectively. The coupled ocean-atmosphere models that use Zebiak's scheme and the revised Weare's scheme are referred to as the ZCWoand ZCWN coupled models, respectively. The simulations between the ZCW0 and ZCWN atmosphere models and between the ZCW0 and ZCWN coupled models are analyzed. The results include: (1) The evolution of heat, meridional wind and divergence anomalies simulated by similar ZCW0 and ZCWN atmosphere models, although the magnitudes of the former are larger than those of the latter; (2) The prediction skill of the Nino3 index from 1982 to 1999 by the ZCWN coupled model shows improvement compared with those by the ZCW0 coupled model; (3) The analysis of E1 Nino events in 1982/1983, 1986/1987, and 1997/1998 and La Nifia events in 1984/1985, 1988/1989, and 1998/2000 suggests that the ZCWN coupled model is better than the ZCW0 coupled model in predicting warm event evolution and cold event generation. The results also show the disadvantage of the ZCWN coupled model for predicting E1 Nino.展开更多
With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the predi...With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the prediction abilities of Zebiak-Cane coupled ocean-atmosphere model (ZC coupled model) with NCEPWSA and FSUWSA serving respectively as initialization wind are compared. The results are as follows. The distribution feature of NCEPWSA matches better with that of the observed SSTA than counterpart of FSUWSA both in 1980s and in 1990s; The ZC ocean model has a better skill under the forcing of NCEPWSA than that of FSUWSA, especially in 1990s. Meanwhile, the forecast abilities of the ZC coupled model in 1990s as well as in 1980s have been improved employing NCEPWSA as initialization wind instead of FSUWSA. Particularly, it succeeded in predicting 1997/1998 E1 Nino 6 to 8 months ahead, further analysis shows that on the antecedent and onset stages of the 1997/1998 E1 Nino event, the horizontal cold and warm distribution characteristics of the simulated SSTA from ZC ocean model, with NCEPWSA forcing compared to FSUWSA forcing, match better with counterparts of the corresponding observed SSTA, whereby providing better predication initialization conditions for ZC coupled model, which, in turn, is favorable to improve the forecast ability of the coupled model.展开更多
Based on the National Center for Atmospheric Research (NCAR) Climate System Model version 1 (CSM-1), a Flexible coupled General Circulation Model version 0 (FGCM-0) is developed in this study through replacing CSM-1’...Based on the National Center for Atmospheric Research (NCAR) Climate System Model version 1 (CSM-1), a Flexible coupled General Circulation Model version 0 (FGCM-0) is developed in this study through replacing CSM-1’s oceanic component model with IAP L30T63 global oceanic general circulation model and some necessary modifications of the other component models. After the coupled model FGCM-0 is spun up for dozens of years, it has been run for 60 years without flux correction. The model does not only show the reasonable long-term mean climatology, but also reproduce a lot of features of the interannual variability of climate, e.g. the ENSO-like events in the tropical Pacific Ocean and the dipole mode pattern in the tropical Indian Ocean. Comparing FGCM-0 with the NCAR CSM-1, some common features are found, e.g. the overestimation of sea ice in the North Pacific and the simulated double ITCZ etc. The further analyses suggest that they may be attributed to errors in the atmospheric model.展开更多
A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but ...A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but in the North Pacific the model gives lower values, and the differences are most significant over the northern boundary of the Pacific. In a net heat flux comparison, the spatial patterns of the two are similar in winter, but more heat loss appears to the east of Japan in FGCM than in COADS. On the interannual timescale, strong (weak) Kuroshio transports to the east of Taiwan lead the increasing (decreasing) net heat flux, which is centered over the Kuroshio Extension region, by 1-2 months, with low (high) pressure anomaly responses appearing at 500 hPa over the North Pacific (north of 25°N) in winter. The northward heat transport of the Kuroshio is one of the important heat sources to support the warming of the atmosphere by the ocean and the formation of the low pressure anomaly at 500 hPa over the North Pacific in winter.展开更多
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an...Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.展开更多
基金the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility (EarthLab)” for its support of our studyjointly supported by the National Key Research and Development Program of China (Grant No. 2023YFF0805501)+2 种基金the Key Laboratory of Meteorological Disaster (KLME) of the Ministry of Education, and the Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD) at Nanjing University of Information Science & Technology, Nanjing, China (Grant No. KLME202204)the NSFC program (42141017)support from the China Scholarship Council.
文摘The Yangtze-Huaihe River Valley(YHRV)experienced a record-breaking mei-yu season during the summer of 2020,prompting investigation into the role of regional ocean-atmosphere coupling in simulating this extreme event.Through comparative analysis of regional ocean-atmosphere coupled(CP)and atmosphere-only(WRF)simulations,the aim of this study was to elucidate the mechanisms underlying this phenomenon.Results indicate that CP effectively reproduced the observed sea surface temperature spatial distribution and its daily variation during the period from 25 June to 25 July 2020,and notably reduced the wet biases over the YHRV when compared to WRF simulations.This improvement in representation was manifested in the observed rainfall spatial distribution and daily variability.The wet biases simulated by WRF were associated with a stronger 200-hPa westerly jet and a more westward-positioned western North Pacific subtropical high(WNPSH)with more intense 500-hPa winds and a stronger 850-hPa circulation.However,these biases were significantly reduced in CP simulations.Mechanism analysis revealed that regional ocean-atmosphere coupling over the western Northwest Pacific influenced surface turbulent heat fluxes and atmospheric instability,thereby modulating the intensity and position of the WNPSH and associated circulation subsystems at different levels.Moreover,adjustments in land-sea thermal contrast induced by ocean-atmosphere coupling impacted YHRV precipitation by altering East Asian circulation systems.These findings highlight the significant role of regional ocean-atmosphere coupling in enhancing the simulation and understanding of extreme mei-yu events over East Asia.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90411010, 40506007)the key project of International Science and Technology Cooperation program of China (2006DFB21250)the 111 project (B07036)
文摘A fully coupled ocean-atmosphere model is applied to highlight the mechanism of the long-term variability (including decadal and longer time scales) in the Pacific Ocean. We are interested in the effect of ocean-atmosphere coupling of different regions during these processes. The control run successfully simulates the Pacific long-term variability, whose leading modes are the Pacific (inter) Decadal Oscillation (PDO) and the North Pacific mode (NPM). Furthermore, three numerical experiments are conducted, shutting down the ocean-atmosphere coupling in the North Pacific, the tropical Pacific, and the South Pacific, respectively. The results show that regional ocean-atmosphere coupling is not only important to the strength of local long-term SST variability but also has an influence on the variability further afield. In both the tropical Pacific and North Pacific, this local effect is the main control, which is much more obvious in the tropical regions. The existence of the PDO is extremely dependent on the coupling in the tropical Pacific. However, extratropical coupling, in particular that in the North Pacific, is also important to form its spatial pattern and strengthen the variability in some tropical areas. For the NPM, its existence is primarily determined by the coupling in the North Pacific.
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金supported by the National Key Research and Development Program of China (MOST)(Grant No.2022YFA1402800)the Chinese Academy of Sciences (CAS) Presidents International Fellowship Initiative (PIFI)(Grant No.2025PG0006)+3 种基金the National Natural Science Foundation of China (NSFC)(Grant Nos.51831012,12274437,and 52161160334)the CAS Project for Young Scientists in Basic Research (Grant No.YSBR-084)the CAS Youth Interdisciplinary Teamthe China Postdoctoral Science Foundation (Grant No.2025M773402)。
文摘Based on the Smit-Suhl formula,we propose a universal approach for solving the magnon-magnon coupling problem in bilayer coupled systems(e.g.,antiferromagnets).This method requires only the energy expression,enabling the automatic derivation of analytical expressions for the eigenmatrix elements via symbolic computation,eliminating the need for tedious manual calculations.Using this approach,we investigate the impact of magnetic hysteresis on magnon-magnon coupling in a system with interlayer Dzyaloshinskii-Moriya interaction(DMI).The magnetic hysteresis leads to an asymmetric magnetic field dependence of the resonance frequency and alters the number of degeneracy points between the pure optical and acoustic modes.Moreover,it can result in the coupling strength at the gap of the f–H phase diagram being nearly vanishing,contrary to the conventionally expected maximum.These results deepen the understanding of the effect of interlayer DMI on magnon–magnon coupling and the proposed universal method significantly streamlines the solving process of magnon–magnon coupling problems.
基金supported by the National Key Research and Development Program of China(No.2022YFF1301301)the Natural Science Foundation of Xiamen Municipality(No.3502Z202472047)the Geological Survey Program of China Geological Survey(DD20190303).
文摘To address the deficiencies in comprehensive surface contamination prevention strategies within China's nitrate-affected regions,this research innovatively proposes the DITAPH model-a systematic framework integrating groundwater nitrate vulnerability assessment and Nitrate Vulnerable Zones(NVZs)delineation through optimization of hydrogeological parameters.Based on detailed hydrogeological and hydrochemical investigations,the DITAPH model was applied in the plain areas of Quanzhou to evaluate its applicability.The model selected hydrogeological parameters(depth of groundwater,lithology of the vadose zone,topographic slope,aquifer water yield property),one climatic parameter(precipitation),and two anthropogenic parameters(land use type and population density)as assessment indicators.The results of the groundwater nitrate vulnerability assessment showed that the low,relatively low,relatively high,and high groundwater nitrate vulnerability zones in the study area accounted for 5.96%,35.44%,53.74%and 4.86%of the total area,respectively.Groundwater nitrate vulnerability was most strongly influenced by human activities,followed by groundwater depth and topographic slope.The high vulnerability zone is mainly affected by domestic and industrial wastewater,whereas the relatively high groundwater nitrate vulnerability zone is primarily influenced by agricultural activities.Validation of the DITAPH model revealed a significant positive correlation between the DITAPH index(DI)and nitrate concentration(ρ(NO3−)).The results of the NVZs delineated by the DITAPH model are reliable and can serve as a tool for water resource management planning,guiding the development of targeted measures in the NVZs to prevent groundwater contamination.
基金supported by the National Natural Science Foundation of China(Nos.22373063 and 22302005)Fundamental Research Funds for the Central Universities of China(No.GK202203002)+1 种基金China Postdoctoral Science Foundation(No.2023M730044)Technology Innovation Leading Program of Shaanxi(Program No.2023KXJ-007).
文摘Deep insights into electrocatalytic mechanisms are vital for the rational design of catalysts for oxygen evolution reaction(OER).Mechanistically,the OER driven by adsorbate evolution mechanism(AEM)is limited by the linear scaling relationship,thereby exhibiting large overpotentials.In the lattice oxygen mechanism(LOM),the OER can be enhanced by enabling direct O_(2)formation.However,this enhancement is accompanied by the generation of oxygen vacancies,which presents a significant challenge to the long-term stability of LOMOER,particularly when operating at high current densities.Recently,the*O-*O coupling mechanism(OCM)has emerged as a promising alternative;it not only breaks the linear scaling relationship but also ensures catalytic stability.This review encapsulates the cutting-edge advancements in electrocatalysts that are grounded in the OCM,offering a detailed interpretation on the foundational principles guiding the design of OCM-OER catalysts.It also highlights recent theoretical investigations combining machine learning(ML)with density functional theory(DFT)calculations to reveal OER mechanisms.At the end of this review,the challenges and opportunities associated with OCM-OER electrocatalysts are discussed.
文摘Since the United Nations launched the Sustainable Development Goals(SDGs)in 2015,global implementation has steadily advanced,yet prominent challenges persist.Progress has been uneven across regions and countries,with Tajikistan representing a typical example of such disparities.Based on 81 SDG indicators for Tajikistan from 2001 to 2023,this study applied a three-level coupling network framework:at the microscale,it identified synergies and trade-offs between indicators;at the mesoscale,it examined the strength and direction of linkages within four SDG-related components(society,finance,governance,and environment);and at the global level,it focused on the overall SDG interlinkages.Spearman’s rank correlation,sliding window method,and topological properties were employed to analyze the coupling dynamics of SDGs.Results showed that over 70.00%of associations in the global SDG network were of medium-to-low intensity,alongside extremely strong ones(|r|value approached 1.00,where r is the correlation coefficient).SDG interactions were generally limited,with stable local synergy clusters in core livelihood sectors.Network modularity fluctuated,reflecting a cycle of differentiation,integration,and fragmentation,while coupling efficiency varied with the external environment.Each component exhibited distinct functional characteristics.The social component maintained high connectivity through the“poverty alleviation-education-healthcare”loop.The environmental component shifted toward coordinated eco-economic governance.The governance-related component broke interdepartmental barriers,while the financial component showed weak links between resource-based indicators and consumption/employment indicators.Tajikistan’s SDG coupling evolved through three phases:survival-oriented(2001–2012),policy integration(2013–2018),and shock adaptation(2019–2023).These phases were driven by policy changes,resource industries,governance optimization,and external factors.This study enriches the analytical framework for understanding the dynamic coupling of SDGs in mountainous resource-dependent countries and provides empirical evidence to support similar countries in formulating phase-specific SDG promotion strategies.
基金supported by the National Key Research and Development Program of China(No.2022YFA1603401)National Natural Science Foundation of China(Nos.12035010 and 12342501)+1 种基金Beijing Outstanding Young Scientist Program(No.JWZQ20240101006)the Tsinghua University Dushi Program.
文摘In this study,three specific scenarios of a novel accelerator light source mechanism called steady-state microbunching(SSMB)were studied:longitudinal weak focusing,longitudinal strong focusing,and generalized longitudinal strong focusing(GLSF).At present,GLSF is the most promising method for realizing high-power short-wavelength coherent radiation with mild requirements on modulation laser power.Its essence is to exploit the ultrasmall natural vertical emittance of an electron beam in a planar storage ring for efficient microbunching formation,like a partial transverse-longitudinal emittance exchange in the optical laser wavelength range.Based on an in-depth investigation of related beam physics,a solution for a GLSF SSMB storage ring that can deliver 1 kW average-power EUV light is presented.The work in this paper,such as the generalized Courant–Snyder formalism,analysis of theoretical minimum emittances,transverse-longitudinal coupling dynamics,and derivation of the bunching factor and modulation strengths for laser-induced microbunching schemes,is expected to be useful not only for the development of SSMB but also for future accelerator light sources in general that demand increasingly precise electron beam phase space manipulations.
基金This work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 40523001, 40221503, 40675050)Major State Basic Research Development Program of China under Grant Nos. 2005CB321703, 2006CB403603the International Partnership Creative Group entitled "The Climate System Model Development and Application Studies".
文摘A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed with these models. While the history of model development is briefly reviewed, emphasis has been put on the achievements made in the last five years. Advances in model development are described along with a summary on scientific issues addressed by using these models. The focus of the review is the climate ocean models and the associated coupled models, including both global and regional models, developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The progress of either coupled model development made by other institutions or climate modeling using internationally developed models also is reviewed.
基金the National Key Research and Development Program of China (Nos.2017YFC1404102,2017YFC1404100)the Strategic Priority Research Program of Chinese Academy of Sciences (Nos.XDB 40000000,XDB 42000000)+4 种基金the National Natural Science Foundation of China (Nos.41690122(41690120),41705082,41421005)the Shandong Taishan Scholarship,the China Postdoctoral Science Foundation (Nos.2018M640659,2019M662453)YU Yongqiang is jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Nos.XDA 19060102.XDB 42000000)REN Hong-Li is jointly supported by the China National Science Foundation (No.41975094)the China National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disaster (No.2018YFC1506004)
文摘El Nino-Southern Oscillation(ENSO) is the strongest interannual signal that is producedby basinscale processes in the tropical Pacific,with significant effects on weather and climate worldwide.In the past,extensive and intensive international efforts have been devoted to coupled model developments for ENSO studies.A hierarchy of coupled ocean-atmo sphere models has been formulated;in terms of their complexity,they can be categorized into intermediate coupled models(ICMs),hybrid coupled models(HCMs),and fully coupled general circulation models(CGCMs).ENSO modeling has made significant progress over the past decades,reaching a stage where coupled models can now be used to successfully predict ENSO events 6 months to one year in advance.Meanwhile,ENSO exhibits great diversity and complexity as observed in nature,which still cannot be adequately captured by current state-of-the-art coupled models,presenting a challenge to ENSO modeling.We primarily reviewed the long-term efforts in ENSO modeling continually and steadily made at different institutions in China;some selected representative examples are presented here to review the current status of ENSO model developments and applications,which have been actively pursued with noticeable progress being made recently.As ENSO simulations are very sensitive to model formulations and process representations etc.,dedicated efforts have been devoted to ENSO model developments and improvements.Now,different ocean-atmosphere coupled models have been available in China,which exhibit good model performances and have already had a variety of applications to climate modeling,including the Coupled Model Intercomparison Project Phase 6(CMIP6).Nevertheless,large biases and uncertainties still exist in ENSO simulations and predictions,and there are clear rooms for their improvements,which are still an active area of researches and applications.Here,model performances of ENSO simulations are assessed in terms of advantages and disadvantages with these differently formulated coupled models,pinpointing to the areas where they need to be further improved for ENSO studies.These analyses provide valuable guidance for future improvements in ENSO simulations and predictions.
基金the National Natural Science Foundation of China under Grant Nos.40221503,40231004, 40233031.
文摘This paper investigates the processes behind the double ITCZ phenomenon, a common problem in Coupled ocean-atmosphere General Circulation Models (CGCMs), using a CGCM—FGCM-0 (Flexible General Circulation Model, version 0). The double ITCZ mode develops rapidly during the ?rst two years of the integration and becomes a perennial phenomenon afterwards in the model. By way of Singular Value Decomposition (SVD) for SST, sea surface pressure, and sea surface wind, some air-sea interactions are analyzed. These interactions prompt the anomalous signals that appear at the beginning of the coupling to develop rapidly. There are two possible reasons, proved by sensitivity experiments: (1) the overestimated east-west gradient of SST in the equatorial Paci?c in the ocean spin-up process, and (2) the underestimated amount of low-level stratus over the Peruvian coast in CCM3 (the Community Climate Model, Version Three). The overestimated east-west gradient of SST brings the anomalous equatorial easterly. The anomalous easterly, a?ected by the Coriolis force in the Southern Hemisphere, turns into an anomalous westerly in a broad area south of the equator and is enhanced by atmospheric anomalous circulation due to the underestimated amount of low-level stratus over the Peruvian coast simulated by CCM3. The anomalous westerly leads to anomalous warm advection that makes the SST warm in the southeast Paci?c. The double ITCZ phenomenon in the CGCM is a result of a series of nonlocal and nonlinear adjustment processes in the coupled system, which can be traced to the uncoupled models, oceanic component, and atmospheric component. The zonal gradient of the equatorial SST is too large in the ocean component and the amount of low-level stratus over the Peruvian coast is too low in the atmosphere component.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
文摘In this paper, ocean-atmosphere coupled regimes are identified on the basis of SVD analysis, cluster analysis and composite analysis. The coupled regimes in cold seasons are identified as the clusters of the ocean-atmosphere coupled states in a low dimensional phase space spanned by the first four SVD modes. Three coupled regimes are found. The first two coupled regimes reflect the ENSO episodes and the accompanying PNA patterns. The third regime, i.e., EAWM regime, is characterized by the strong EAWM activity and the specific SST anomaly. The composite analysis gives further evidences to the identification of EAWM regime and also demonstrates the dynamical process of its formation. The anomaly pattern of the tropical Pacific SSTA in the strong EAWM year differs significantly from that of the La Nina year.
基金supported by the Chinese Academy of Sciences(CAS)“Innovation Program”(ZKCX2-SW-210)State Key Project(G2000078502)the National Natural Science Foundation of China(Nos.40231004,40221503,and 40023001).
文摘Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), have been working to develop a global OGCM and a global coupled ocean-atmosphere general circulation modei (CGCM). Prom the original flux anomaly-coupling modei developed in the beginning of the 1990s to the latest directly-coupling modei, LASG scientists have developed four global coupled GCMs. This study summarizes the development history of these models and describes the third and fourth coupled GCMs and selected applications. Strengths and weaknesses of these models are highlighted.
文摘In this paper, the interannual variability simulated by the coupled ocean-atmosphere general circulation modelof the institute of Atmospheric Physics (IAP CGCM) in 40 year integrations is analyzed, and compared with that bythe corresponding IAP AGCM which uses the climatic sea surface temperature as the boundary condition in 25 yearintegrations.The mean climatic states of January and July simulated by IAP CGCM are in good agreement with that by IAPAGCM, i.e., no serious 'climate drift' occurs in the CGCM simulation. A comparison of the results from AGCM andCGCM indicates that the standard deviation of the monthly averaged sea level pressure simulated by IAP CGCM ismuch greater than that by IAP AGCM in tropical region. In addition, both Southern Oscillation (SO) and NorthAtlantic Oscillation (NAO) can be found in the CGCM simulation for January, but these two oscillations do not existin the AGCM simulation.The interannual variability of climate may be classified into two typest one is the variation of the annual mean,another is the variation of the annual amplitude. The ocean-atmosphere interaction mainly increases the first type ofvariability. By means of the rotated EOF, the most important patterns corresponding to the two types of interannualvariability are found to have different spatial and temporal characteristics.
基金National Natural Science Foundation of China (40875025, 40875030, 40775033)Shanghai Natural Science Foundation of China (08ZR1422900)Key Promotion Project of New Meteorology Technology of the China Meteorological Administration in 2009 (09A13)
文摘This study revises Weare's latent heat parameterization scheme and conducts an associated theoretic analysis. The revised Weare's scheme is found to present potentially better results than Zebiak's scheme. The Zebiak-Cane coupled ocean-atmosphere model, initialized by the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) reanalysis of wind stress anomaly at 925 hPa, is referred to as the ZCW coupled model. The atmosphere models of the ZCW coupled model that use Zebiak's scheme and the revised Weare's scheme are referred to as the ZCW0 and ZCWN atmosphere models, respectively. The coupled ocean-atmosphere models that use Zebiak's scheme and the revised Weare's scheme are referred to as the ZCWoand ZCWN coupled models, respectively. The simulations between the ZCW0 and ZCWN atmosphere models and between the ZCW0 and ZCWN coupled models are analyzed. The results include: (1) The evolution of heat, meridional wind and divergence anomalies simulated by similar ZCW0 and ZCWN atmosphere models, although the magnitudes of the former are larger than those of the latter; (2) The prediction skill of the Nino3 index from 1982 to 1999 by the ZCWN coupled model shows improvement compared with those by the ZCW0 coupled model; (3) The analysis of E1 Nino events in 1982/1983, 1986/1987, and 1997/1998 and La Nifia events in 1984/1985, 1988/1989, and 1998/2000 suggests that the ZCWN coupled model is better than the ZCW0 coupled model in predicting warm event evolution and cold event generation. The results also show the disadvantage of the ZCWN coupled model for predicting E1 Nino.
基金Natural Science Foundation of China (40275016)Science and Technology DevelopmentProject for the Shanghai Meteorological Bureau (0301)
文摘With simultaneous observed sea surface temperature anomaly (SSTA), the difference between NCEP/NCAR 925hPa reanalysis wind stress anomaly (NCEPWSA) and FSU wind stress anomaly (FSUWSA) is analyzed, and the prediction abilities of Zebiak-Cane coupled ocean-atmosphere model (ZC coupled model) with NCEPWSA and FSUWSA serving respectively as initialization wind are compared. The results are as follows. The distribution feature of NCEPWSA matches better with that of the observed SSTA than counterpart of FSUWSA both in 1980s and in 1990s; The ZC ocean model has a better skill under the forcing of NCEPWSA than that of FSUWSA, especially in 1990s. Meanwhile, the forecast abilities of the ZC coupled model in 1990s as well as in 1980s have been improved employing NCEPWSA as initialization wind instead of FSUWSA. Particularly, it succeeded in predicting 1997/1998 E1 Nino 6 to 8 months ahead, further analysis shows that on the antecedent and onset stages of the 1997/1998 E1 Nino event, the horizontal cold and warm distribution characteristics of the simulated SSTA from ZC ocean model, with NCEPWSA forcing compared to FSUWSA forcing, match better with counterparts of the corresponding observed SSTA, whereby providing better predication initialization conditions for ZC coupled model, which, in turn, is favorable to improve the forecast ability of the coupled model.
基金This study is jointly supported by Chinese Academy of Sciences under Grant "Hundred Talents" for "Validation of Coupled Climate
文摘Based on the National Center for Atmospheric Research (NCAR) Climate System Model version 1 (CSM-1), a Flexible coupled General Circulation Model version 0 (FGCM-0) is developed in this study through replacing CSM-1’s oceanic component model with IAP L30T63 global oceanic general circulation model and some necessary modifications of the other component models. After the coupled model FGCM-0 is spun up for dozens of years, it has been run for 60 years without flux correction. The model does not only show the reasonable long-term mean climatology, but also reproduce a lot of features of the interannual variability of climate, e.g. the ENSO-like events in the tropical Pacific Ocean and the dipole mode pattern in the tropical Indian Ocean. Comparing FGCM-0 with the NCAR CSM-1, some common features are found, e.g. the overestimation of sea ice in the North Pacific and the simulated double ITCZ etc. The further analyses suggest that they may be attributed to errors in the atmospheric model.
基金The authors would like to thank Prof.Zhengyu Liu,Mr.Wei Liu and Mr.Wu Shu for giving good suggestions and comments.This work was jointly supported by an open project of LASG,the Natural Science Foundation of China(Grant Nos.40333030 and 40231004)the National Key Programme(G2000078502).
文摘A comparative study between the output of the Flexible Global Climate Model Version 1.0 (FGCM- 1.0) and the observations is performed. At 500 hPa, the geopotential height of FGCM is similar to the observations, but in the North Pacific the model gives lower values, and the differences are most significant over the northern boundary of the Pacific. In a net heat flux comparison, the spatial patterns of the two are similar in winter, but more heat loss appears to the east of Japan in FGCM than in COADS. On the interannual timescale, strong (weak) Kuroshio transports to the east of Taiwan lead the increasing (decreasing) net heat flux, which is centered over the Kuroshio Extension region, by 1-2 months, with low (high) pressure anomaly responses appearing at 500 hPa over the North Pacific (north of 25°N) in winter. The northward heat transport of the Kuroshio is one of the important heat sources to support the warming of the atmosphere by the ocean and the formation of the low pressure anomaly at 500 hPa over the North Pacific in winter.
基金financially supported by the National Natural Science Foundation of China(Nos.42272153 and 42472195)the Research Fund of PetroChina Tarim Oilfield Company(No.671023060003)the Research Fund of China National Petroleum Corporation Limited(No.2023ZZ16YJ04).
文摘Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.