The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens...The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.展开更多
Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and...Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and sensor node movement.We propose an adaptive AUV-assisted data collection strategy for ocean currents to address these issues.First,we consider the energy consumption of an AUV in conjunction with the value of information(VoI)over the sensor nodes and formulate an optimization problem to maximize the VoI-energy ratio.The AUV yaw problem is then solved by deriving the AUV's reachable region in different ocean current environments and the optimal cruising direction to the target nodes.Finally,using the predicted VoI-energy ratio,we sequentially design a distributed path planning algorithm to select the next target node for AUV.The simulation results indicate that the proposed strategy can utilize ocean currents to aid AUV navigation,thereby reducing the AUV's energy consumption and ensuring timely data collection.展开更多
A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is rou...A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean ‘instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.展开更多
Blue energy,which includes rainfall,tidal current,wave,and water-flow energy,is a promising renewable resource,although its exploitation is limited by current technologies and thus remains low.This form of energy is m...Blue energy,which includes rainfall,tidal current,wave,and water-flow energy,is a promising renewable resource,although its exploitation is limited by current technologies and thus remains low.This form of energy is mainly harvested by electromagnetic generators(EMGs),which generate electricity via Lorenz force-driven electron flows.Triboelectric nano genera tors(TENGs)and TENG networks exhibit superiority over EMGs in low-frequency and high-entropy energy harvesting as a new approach for blue energy harvesting.A TENG produces electrical outputs by adopting the mechanism of Maxwell’s displacement current.To date,a series of research efforts have been made to optimize the structure and performance of TENGs for effective blue energy harvesting and marine environmental applications.Despite the great progress that has been achieved in the use of TENGs in this context so far,continuous exploration is required in energy conversion,device durability,power management,and environmental applications.This review reports on advances in TENGs for blue energy harvesting and marine environmental monitoring.It introduces the theoretical foundations of TENGs and discusses advanced TENG prototypes for blue energy harvesting,including TENG structures that function in freestanding and contact-separation modes.Performance enhancement strategies for TENGs intended for blue energy harvesting are also summarized.Finally,marine environmental applications of TENGs based on blue energy harvesting are discussed.展开更多
Distributed underwater acoustic sensor networks(UASNs)are envisioned in real-time ocean current velocity estimation.However,UASNs at present are still dominated by post-processing partially due to the complexity of on...Distributed underwater acoustic sensor networks(UASNs)are envisioned in real-time ocean current velocity estimation.However,UASNs at present are still dominated by post-processing partially due to the complexity of on-line detection for travel times and lack of dedicated medium access control(MAC)protocols.In this study,we propose a dedicated MAC protocol package for real-time ocean current velocity estimation using distributed UASNs.First,we introduce the process and requirements of ocean current velocity estimation.Then,we present a series of spatial reuse time division multiple access(TDMA)protocols for each phase of real-time ocean current field estimation using distributed UASNs,followed by numerical analysis.We divide UASNs into two categories according to their computing ability:feature-complete and feature-incomplete systems.The feature-complete systems that have abundant computing ability carry out the presented MAC protocol package in three phases,whereas the feature-incomplete ones do not have enough computing ability and the presented MAC protocol package is reduced to two phases plus an additional downloading phase.Numerical analysis shows that feature-complete systems using mini-slot TDMA have the best real-time performance,in comparison with feature-incomplete systems and other feature-complete counterparts.Feature-incomplete systems are more energy-saving than feature-complete ones,owing to the absence of in-network data exchange.展开更多
提前获知或预测网络的关键节点,便可根据关键节点的相关信息对网络进行优化,当网络瘫痪时,可第一时间排查关键节点,减少网络维护时间和成本.现有静态无线传感器网络关键节点预测方法,不适用于机会传感器网络(opportunistic sensor netwo...提前获知或预测网络的关键节点,便可根据关键节点的相关信息对网络进行优化,当网络瘫痪时,可第一时间排查关键节点,减少网络维护时间和成本.现有静态无线传感器网络关键节点预测方法,不适用于机会传感器网络(opportunistic sensor networks,OSNs).针对机会传感器网络结构动态变化、消息传输时延高的特点,分析多区域机会传感器网络分层结构的消息传输过程,定义阶段贡献度反映Ferry节点在消息传输过程中的贡献程度,定义区域贡献度反映Ferry节点对区域的贡献程度.在此基础上,以Ferry节点在网络中的综合贡献度作为判断关键节点的依据,提出基于多属性决策中理想点法(technique for order preference by similarity to ideal solution,TOPSIS)的关键节点预测方法.实验结果表明:采用改进TOPSIS算法能够获得更高的预测精度;搭建了实验床以进一步验证提出的预测方法,结果表明,采用改进TOPSIS算法的预测精度更高.展开更多
针对部署环境复杂多变的海洋传感器网络,根据不同海洋参数对水声通信的影响,设计海洋参数自适应时间同步(OPA-Sync,ocean parameter adaptive time synchronization)算法。通过参数调节来提高时间同步算法对不同海洋环境的适应性,并对...针对部署环境复杂多变的海洋传感器网络,根据不同海洋参数对水声通信的影响,设计海洋参数自适应时间同步(OPA-Sync,ocean parameter adaptive time synchronization)算法。通过参数调节来提高时间同步算法对不同海洋环境的适应性,并对算法进行了优化,提高运算效率。仿真表明,OPA-Sync可以适应不同的海洋条件,在同步精度和能效方面都优于现有算法。展开更多
基金Y. Wang was supported in part by the US National Science Foundation (NSF) under Grant Nos.CNS-0721666,CNS-0915331,and CNS-1050398Y. Liu was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61074092+1 种基金by the Shandong Provincial Natural Science Foundation,China under Grant No.Q2008E01Z. Guo was partially supported by the NSFC under Grant Nos. 61170258 and 6093301
文摘The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.
基金supported by the National Natural Science Foundation of China(62071472,62101556)the Natural Science Foundation of Jiangsu province(BK20200650,BK20210489)the Future Network Scientific Research Fund Project(FNSRFP2021-YB-12)。
文摘Autonomous underwater vehicle(AUV)-assisted data collection is an efficient approach to implementing smart ocean.However,the data collection in time-varying ocean currents is plagued by two critical issues:AUV yaw and sensor node movement.We propose an adaptive AUV-assisted data collection strategy for ocean currents to address these issues.First,we consider the energy consumption of an AUV in conjunction with the value of information(VoI)over the sensor nodes and formulate an optimization problem to maximize the VoI-energy ratio.The AUV yaw problem is then solved by deriving the AUV's reachable region in different ocean current environments and the optimal cruising direction to the target nodes.Finally,using the predicted VoI-energy ratio,we sequentially design a distributed path planning algorithm to select the next target node for AUV.The simulation results indicate that the proposed strategy can utilize ocean currents to aid AUV navigation,thereby reducing the AUV's energy consumption and ensuring timely data collection.
基金supported by the open fund project ‘Research of Information Service of Marine Sensor Web’ (Grant No.2011002)the project ‘Research on Channel-Characteristics-Oriented Data Transmission Algorithm in USNs’ of NSF of China (Grant No.61202403)the projects ‘Research of Making Regulation of Testing Technology of Device Interface’ and ‘Development and Application of Real-Time and Long-Term Observation Network Under Nearshore and Adjacent Marine Areas’ of Public science and Technology Research Funds Projects of Ocean(Grant No.201305033-6,No.201105030)
文摘A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean ‘instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.
基金the National Key Research and Development Project from the Minister of Science and Technology(2021YFA1201601 and 2021YFA1201604)the Innovation Project of Ocean Science and Technology(22-3-3-hygg-18-hy)+2 种基金the project supported by the Fundamental Research Funds for the Central Universities(E2E46805)the China National Postdoctoral Program for Innovative Talents(BX20220292)the China Postdoctoral Science Foundation(2022M723100)。
文摘Blue energy,which includes rainfall,tidal current,wave,and water-flow energy,is a promising renewable resource,although its exploitation is limited by current technologies and thus remains low.This form of energy is mainly harvested by electromagnetic generators(EMGs),which generate electricity via Lorenz force-driven electron flows.Triboelectric nano genera tors(TENGs)and TENG networks exhibit superiority over EMGs in low-frequency and high-entropy energy harvesting as a new approach for blue energy harvesting.A TENG produces electrical outputs by adopting the mechanism of Maxwell’s displacement current.To date,a series of research efforts have been made to optimize the structure and performance of TENGs for effective blue energy harvesting and marine environmental applications.Despite the great progress that has been achieved in the use of TENGs in this context so far,continuous exploration is required in energy conversion,device durability,power management,and environmental applications.This review reports on advances in TENGs for blue energy harvesting and marine environmental monitoring.It introduces the theoretical foundations of TENGs and discusses advanced TENG prototypes for blue energy harvesting,including TENG structures that function in freestanding and contact-separation modes.Performance enhancement strategies for TENGs intended for blue energy harvesting are also summarized.Finally,marine environmental applications of TENGs based on blue energy harvesting are discussed.
基金This work was supported by the National Natural Science Foundation of China(No.61531017)the Science and Technology Bureau of Zhoushan(No.2018C41029)the Science and Technology Department of Zhejiang Province(Nos.2018R52046 and LGG18F010005).
文摘Distributed underwater acoustic sensor networks(UASNs)are envisioned in real-time ocean current velocity estimation.However,UASNs at present are still dominated by post-processing partially due to the complexity of on-line detection for travel times and lack of dedicated medium access control(MAC)protocols.In this study,we propose a dedicated MAC protocol package for real-time ocean current velocity estimation using distributed UASNs.First,we introduce the process and requirements of ocean current velocity estimation.Then,we present a series of spatial reuse time division multiple access(TDMA)protocols for each phase of real-time ocean current field estimation using distributed UASNs,followed by numerical analysis.We divide UASNs into two categories according to their computing ability:feature-complete and feature-incomplete systems.The feature-complete systems that have abundant computing ability carry out the presented MAC protocol package in three phases,whereas the feature-incomplete ones do not have enough computing ability and the presented MAC protocol package is reduced to two phases plus an additional downloading phase.Numerical analysis shows that feature-complete systems using mini-slot TDMA have the best real-time performance,in comparison with feature-incomplete systems and other feature-complete counterparts.Feature-incomplete systems are more energy-saving than feature-complete ones,owing to the absence of in-network data exchange.
文摘提前获知或预测网络的关键节点,便可根据关键节点的相关信息对网络进行优化,当网络瘫痪时,可第一时间排查关键节点,减少网络维护时间和成本.现有静态无线传感器网络关键节点预测方法,不适用于机会传感器网络(opportunistic sensor networks,OSNs).针对机会传感器网络结构动态变化、消息传输时延高的特点,分析多区域机会传感器网络分层结构的消息传输过程,定义阶段贡献度反映Ferry节点在消息传输过程中的贡献程度,定义区域贡献度反映Ferry节点对区域的贡献程度.在此基础上,以Ferry节点在网络中的综合贡献度作为判断关键节点的依据,提出基于多属性决策中理想点法(technique for order preference by similarity to ideal solution,TOPSIS)的关键节点预测方法.实验结果表明:采用改进TOPSIS算法能够获得更高的预测精度;搭建了实验床以进一步验证提出的预测方法,结果表明,采用改进TOPSIS算法的预测精度更高.
文摘针对部署环境复杂多变的海洋传感器网络,根据不同海洋参数对水声通信的影响,设计海洋参数自适应时间同步(OPA-Sync,ocean parameter adaptive time synchronization)算法。通过参数调节来提高时间同步算法对不同海洋环境的适应性,并对算法进行了优化,提高运算效率。仿真表明,OPA-Sync可以适应不同的海洋条件,在同步精度和能效方面都优于现有算法。