The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens...The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.展开更多
The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network(MDTN), the mobility of vessels can create the ...The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network(MDTN), the mobility of vessels can create the chances of end-to-end communication. The mobility pattern of vessel is one of the key metrics on ocean MDTN network. Because of the high cost, few experiments have focused on research of vessel mobility pattern for the moment. In this paper, we study the traces of more than 4000 fishing and freight vessels. Firstly, to solve the data noise and sparsity problem, we design two algorithms to filter the noise and complement the missing data based on the vessel's turning feature. Secondly, after studying the traces of vessels, we observe that the vessel's traces are confined by invisible boundary. Thirdly, through defining the distance between traces, we design MR-Similarity algorithm to find the mobility pattern of vessels. Finally, we realize our algorithm on cluster and evaluate the performance and accuracy. Our results can provide the guidelines on design of data routing protocols on ocean MDTN.展开更多
There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analys...There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.展开更多
Arriving to the east African coast in the 16th century, Portuguese faced an important and well-structured commercial network dominated by Muslim merchants. Operating throughout the Indian Ocean and in articulation wit...Arriving to the east African coast in the 16th century, Portuguese faced an important and well-structured commercial network dominated by Muslim merchants. Operating throughout the Indian Ocean and in articulation with the inland African trade routes by way of the coastal settlements from Bazaruto up to the north of Mozambique, this network bustled luxury goods and basic goods benefiting either from a network of inter-personal relationships and kinship that supported the whole business, or from an ancestral knowledge on the techniques and particular procedures indispensable to navigating in the Indian Ocean. This trade made the prosperity of small southern ports, like Sofala or Mozambique long before the Portuguese arrival. However, this trade was so much dependent on the network's capacity of organisation and the supply demand relation of the goods involved, as well as on other factors such as the political stability of the African kingdoms, the environmental changes that shaped flows and trade routes or the actual knowledge of the region and of the different forms of organization of local communities. By focusing in the ports of Sofala and Mozambique and the information provided by the Portuguese documents we intend to analyse its evolution during the 16th century in order to understand its role in the Indian Ocean commercial network under Portuguese rule.展开更多
A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is rou...A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean ‘instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.展开更多
基金Y. Wang was supported in part by the US National Science Foundation (NSF) under Grant Nos.CNS-0721666,CNS-0915331,and CNS-1050398Y. Liu was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61074092+1 种基金by the Shandong Provincial Natural Science Foundation,China under Grant No.Q2008E01Z. Guo was partially supported by the NSFC under Grant Nos. 61170258 and 6093301
文摘The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.
基金supported by the National Key R&D Program (No. 2016YFC1401900)the China Postdoctoral Science Foundation (No. 2017M620293)+3 种基金the National Natural Science Foundation of China (Nos. 61379127, 61379128, 61572448)the Fundamental Research Funds for the Central Universities (No. 201713016)Qingdao National Labor for Marine Science and Technology Open Research Project (No. QNLM2016ORP0405)Natural Science Foundation of Shandong (No. ZR2018BF006)
文摘The network coverage is a big problem in ocean communication, and there is no low-cost solution in the short term. Based on the knowledge of Mobile Delay Tolerant Network(MDTN), the mobility of vessels can create the chances of end-to-end communication. The mobility pattern of vessel is one of the key metrics on ocean MDTN network. Because of the high cost, few experiments have focused on research of vessel mobility pattern for the moment. In this paper, we study the traces of more than 4000 fishing and freight vessels. Firstly, to solve the data noise and sparsity problem, we design two algorithms to filter the noise and complement the missing data based on the vessel's turning feature. Secondly, after studying the traces of vessels, we observe that the vessel's traces are confined by invisible boundary. Thirdly, through defining the distance between traces, we design MR-Similarity algorithm to find the mobility pattern of vessels. Finally, we realize our algorithm on cluster and evaluate the performance and accuracy. Our results can provide the guidelines on design of data routing protocols on ocean MDTN.
基金Key Science and Technology Project of the Shanghai Committee of Science and Technology, China (No.06dz1200921)Major Basic Research Project of the Shanghai Committee of Science and Technology(No.08JC1400100)+1 种基金Shanghai Talent Developing Foundation, China(No.001)Specialized Foundation for Excellent Talent of Shanghai,China
文摘There are a number of dirty data in observation data set derived from integrated ocean observing network system. Thus, the data must be carefully and reasonably processed before they are used for forecasting or analysis. This paper proposes a data pre-processing model based on intelligent algorithms. Firstly, we introduce the integrated network platform of ocean observation. Next, the preprocessing model of data is presemed, and an imelligent cleaning model of data is proposed. Based on fuzzy clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means clustering. The proposed dynamic algorithm can automatically f'md the new clustering center with the updated sample data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results through observation data analysis.
文摘Arriving to the east African coast in the 16th century, Portuguese faced an important and well-structured commercial network dominated by Muslim merchants. Operating throughout the Indian Ocean and in articulation with the inland African trade routes by way of the coastal settlements from Bazaruto up to the north of Mozambique, this network bustled luxury goods and basic goods benefiting either from a network of inter-personal relationships and kinship that supported the whole business, or from an ancestral knowledge on the techniques and particular procedures indispensable to navigating in the Indian Ocean. This trade made the prosperity of small southern ports, like Sofala or Mozambique long before the Portuguese arrival. However, this trade was so much dependent on the network's capacity of organisation and the supply demand relation of the goods involved, as well as on other factors such as the political stability of the African kingdoms, the environmental changes that shaped flows and trade routes or the actual knowledge of the region and of the different forms of organization of local communities. By focusing in the ports of Sofala and Mozambique and the information provided by the Portuguese documents we intend to analyse its evolution during the 16th century in order to understand its role in the Indian Ocean commercial network under Portuguese rule.
基金supported by the open fund project ‘Research of Information Service of Marine Sensor Web’ (Grant No.2011002)the project ‘Research on Channel-Characteristics-Oriented Data Transmission Algorithm in USNs’ of NSF of China (Grant No.61202403)the projects ‘Research of Making Regulation of Testing Technology of Device Interface’ and ‘Development and Application of Real-Time and Long-Term Observation Network Under Nearshore and Adjacent Marine Areas’ of Public science and Technology Research Funds Projects of Ocean(Grant No.201305033-6,No.201105030)
文摘A great deal of ocean sensor observation data exists, for a wide range of marine disciplines, derived from in situ and remote observing platforms, in real-time, near-real-time and delayed mode. Ocean monitoring is routinely completed using sensors and instruments. Standardization is the key requirement for exchanging information about ocean sensors and sensor data and for comparing and combining information from different sensor networks. One or more sensors are often physically integrated into a single ocean ‘instrument' device, which often brings in many challenges related to diverse sensor data formats, parameters units, different spatiotemporal resolution, application domains, data quality and sensors protocols. To face these challenges requires the standardization efforts aiming at facilitating the so-called Sensor Web, which making it easy to provide public access to sensor data and metadata information. In this paper, a Marine Sensor Web, based on SOA and EDA and integrating the MBARI's PUCK protocol, IEEE 1451 and OGC SWE 2.0, is illustrated with a five-layer architecture. The Web Service layer and Event Process layer are illustrated in detail with an actual example. The demo study has demonstrated that a standard-based system can be built to access sensors and marine instruments distributed globally using common Web browsers for monitoring the environment and oceanic conditions besides marine sensor data on the Web, this framework of Marine Sensor Web can also play an important role in many other domains' information integration.