期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Observable-specific phase biases of Wuhan multi-GNSS experiment analysis center’s rapid satellite products 被引量:10
1
作者 Jianghui Geng Qiyuan Zhang +2 位作者 Guangcai Li Jingnan Liu Donglie Liu 《Satellite Navigation》 2022年第3期91-105,I0003,共16页
Precise Point Positioning(PPP)with Ambiguity Resolution(AR)is an important high-precision positioning technique that is gaining popularity in geodetic and geophysical applications.The implementation of PPP-AR requires... Precise Point Positioning(PPP)with Ambiguity Resolution(AR)is an important high-precision positioning technique that is gaining popularity in geodetic and geophysical applications.The implementation of PPP-AR requires precise products such as orbits,clocks,code,and phase biases.As one of the analysis centers of the International Global Navigation Satellite System(GNSS)Service(IGS),the Wuhan University Multi-GNSS experiment(WUM)Analysis Center(AC)has provided multi-GNSS Observable-Specific Bias(OSB)products with the associated orbit and clock products.In this article,we first introduce the models and generation strategies of WUM rapid phase clock/bias products and orbit-related products(with a latency of less than 16 h).Then,we assess the performance of these products by comparing them with those of other ACs and by testing the PPP-AR positioning precision,using data from Day of the Year(DOY)047 to DOY 078 in 2022.It is found that the peak-to-peak value of phase OSBs is within 2 ns,and their fluctuations are caused by the clock day boundary discontinuities.The associated Global Positioning System(GPS)orbits have the best consistency with European Space Agency(ESA)products,and those of other systems rank in the medium place.GLObal NAvigation Satellite System(GLONASS)clocks show slightly inconsistency with other ACs’due to the antenna thrust power adopted,while the phase clocks of other GNSSs show no distortion compared with legacy clocks.With well-estimated phase products for Precise Orbit Determination(POD),the intrinsic precision is improved by 14%,17%,and 24%for GPS,Galileo navigation satellite system(Galileo),and BeiDou-3 Navigation Satellite System(BDS-3),respectively.The root mean square of PPP-AR using our products in static mode with respect to IGS weekly solutions can reach 0.16 cm,0.16 cm,and 0.44 cm in the east,north,and up directions,respectively.The multi-GNSS wide-lane ambiguity fixing rates are all above 90%,while the narrow-lane fixing rates above 80%.In conclusion,the phase OSB products at WUM have good precision and performance,which will benefit multi-GNSS PPP-AR and POD. 展开更多
关键词 Multi global navigation satellite system observable-specific phase bias Precise point positioning with ambiguity resolution Wuhan University multi-GNSS experiment analysis center Precise orbit determination
原文传递
Estimation of BDS pseudorange biases with high temporal resolution:feasibility,affecting factors,and necessity 被引量:3
2
作者 Ke Su Guoqiang Jiao 《Satellite Navigation》 SCIE EI CSCD 2023年第3期14-34,共21页
A common practice adopted for the pseudorange bias estimation and calibration assumes that Global Navigation Satellite System satellite-dependent pseudorange biases vary gently over time.Whereupon satellite pseudorang... A common practice adopted for the pseudorange bias estimation and calibration assumes that Global Navigation Satellite System satellite-dependent pseudorange biases vary gently over time.Whereupon satellite pseudorange biases are routinely estimated and provided as the products with low temporal resolution,e.g.,hourly or daily,by the agencies.The story sounds unquestionably perfect under the acquainted assumption.To validate the inadequacy of the above hypothesis we herein present an approach to the estimate the BeiDou Navigation Satellite System(BDS)pseudorange biases with high temporal resolution.Its feasibility,affecting factors,and necessity are discussed.Concretely,the Geometry-Free function models are first constructed to retrieve the linear combination of the pseudorange biases;then the pseudorange Observable-specific Signal Bias(OSB)values with respect to baseline frequencies(e.g.,BDS C2I/C6I)are estimated along with the ionosphere modeling;subsequently,all multi-frequency pseudorange OSBs are determined by using the ionospheric information with constraint conditions;finally,the possible Differential Code Bias sets are attainable with the estimated pseudorange OSBs.Using the observation data of four months when the estimated BDS pseudorange biases are stable,their reliability is demonstrated with the stability at the level of sub-nanosecond and the BeiDou-3 Navigation Satellite System(BDS-3)values more stable than that of BeiDou-2 Navigation Satellite System(BDS-2).The comparison between the estimated pseudorange biases and the Chinese Academy of Sciences products reveals that the accuracy of the estimated pseudorange biases is 0.2–0.4 ns.Moreover,the large magnitude of the short-term pseudorange bias variation in the tens of nanoseconds for the BDS-2 and BDS-3 are found in years 2021 and 2022,which are affected by two types of the satellite flex power for the BDS-2 and BDS-3,respectively.We stress that it’s necessary to estimate the BDS pseudorange biases with high temporal resolution in the case of the satellite flex power and the products currently provided by the agencies cannot reflect the true quantity under the circumstance. 展开更多
关键词 Beidou navigation satellite system(BDS) Pseudorange observable-specific signal bias(OSB) Differential code bias(DCB) Geometry-free(GF)function model Satellite flex power
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部