Smart sustainable city is that uses the technology to transform their core systems and optimize the exploitation of limited resources;it is a knowledge-based system that provides real-time insights to stakeholders. As...Smart sustainable city is that uses the technology to transform their core systems and optimize the exploitation of limited resources;it is a knowledge-based system that provides real-time insights to stakeholders. As a result of the challenges facing the cities of the Gaza Strip regarding population growth, lack of resources, increased demand for materials, the siege imposed on the Gaza Strip for more than twelve years, the smart city approach can contribute to mitigating these challenges and creating opportunities and solutions for many of these problems. Thus, this study aims to promote sustainable urban development through the adoption of smart city approaches using the city’s 3D representation and analysis capabilities to reflect and define the current situation and formulate a future vision using GIS and Building Information Modeling (BIM) considering Sheikh Hamad city as a case study. This involves developing a GIS web-based 3D model of the urban landscape of the city and creating a geometric descriptive database that includes the various elements of the city such as buildings, services and other facilities. The constructed database is to be automatically updated and can be used to facilitate documentation, transparency and help in decision-making process. The 3D smart city can also benefit stakeholders, government officials, private sectors as well as the city citizens. Therefore, urban services will be more efficient, and the cities of the Gaza Strip will be able to achieve sustainable development and competition in difficult economic, environmental and social conditions. This study recommends the use of BIM and GIS technologies in the transformation to a smart city concept as well as the rehabilitation of existing cadres to enable them to use those technologies to achieve the goal of improving the quality of life and facilitating the daily lives of people.展开更多
Blasting is routinely carried out at various resource extraction sites, even in urban areas. As a consequence of this, residents around urban quarry sites are affected by ground vibration induced by blasting on a regu...Blasting is routinely carried out at various resource extraction sites, even in urban areas. As a consequence of this, residents around urban quarry sites are affected by ground vibration induced by blasting on a regular basis. In this study, a prediction and visualization system for ground vibrations is developed for the purpose of reducing the adverse psychological effects of blasting. The system consists of predicting ground vibration using an Artificial Neural Network (ANN) and visualizing it on an online map using Web-GIS. A prediction model using ANN that learned the optimum weight by taking 50 sets of data indicated a regression value of 0.859 and a Mean Square Error (MSE) of 0.0228. Compared with previous researches, these values are not bad results. Peak Particle Velocity (PPV) was used as a metric to measure ground vibration intensity. A color contour is generated using GIS tools based on the PPV value of each prediction point. The system is completed by overlaying the contour onto a basic map in a website. The basic map shows the surrounding area through the use of Google Maps data. This system can be used by anyone with access to the internet and a browser, requiring no special software or hardware. In addition, mining operations can utilize the data to modify blasting design and planning to minimize ground vibration. In conclusion, this system has the potential to alleviate the worries of surrounding residents caused by ground vibrations from blasting due to the fact that they can personally check the predicted vibration around their locale. Furthermore, since this data will be publicly available on the internet, it is also possible that this system can contribute to research in other fields.展开更多
文摘Smart sustainable city is that uses the technology to transform their core systems and optimize the exploitation of limited resources;it is a knowledge-based system that provides real-time insights to stakeholders. As a result of the challenges facing the cities of the Gaza Strip regarding population growth, lack of resources, increased demand for materials, the siege imposed on the Gaza Strip for more than twelve years, the smart city approach can contribute to mitigating these challenges and creating opportunities and solutions for many of these problems. Thus, this study aims to promote sustainable urban development through the adoption of smart city approaches using the city’s 3D representation and analysis capabilities to reflect and define the current situation and formulate a future vision using GIS and Building Information Modeling (BIM) considering Sheikh Hamad city as a case study. This involves developing a GIS web-based 3D model of the urban landscape of the city and creating a geometric descriptive database that includes the various elements of the city such as buildings, services and other facilities. The constructed database is to be automatically updated and can be used to facilitate documentation, transparency and help in decision-making process. The 3D smart city can also benefit stakeholders, government officials, private sectors as well as the city citizens. Therefore, urban services will be more efficient, and the cities of the Gaza Strip will be able to achieve sustainable development and competition in difficult economic, environmental and social conditions. This study recommends the use of BIM and GIS technologies in the transformation to a smart city concept as well as the rehabilitation of existing cadres to enable them to use those technologies to achieve the goal of improving the quality of life and facilitating the daily lives of people.
文摘Blasting is routinely carried out at various resource extraction sites, even in urban areas. As a consequence of this, residents around urban quarry sites are affected by ground vibration induced by blasting on a regular basis. In this study, a prediction and visualization system for ground vibrations is developed for the purpose of reducing the adverse psychological effects of blasting. The system consists of predicting ground vibration using an Artificial Neural Network (ANN) and visualizing it on an online map using Web-GIS. A prediction model using ANN that learned the optimum weight by taking 50 sets of data indicated a regression value of 0.859 and a Mean Square Error (MSE) of 0.0228. Compared with previous researches, these values are not bad results. Peak Particle Velocity (PPV) was used as a metric to measure ground vibration intensity. A color contour is generated using GIS tools based on the PPV value of each prediction point. The system is completed by overlaying the contour onto a basic map in a website. The basic map shows the surrounding area through the use of Google Maps data. This system can be used by anyone with access to the internet and a browser, requiring no special software or hardware. In addition, mining operations can utilize the data to modify blasting design and planning to minimize ground vibration. In conclusion, this system has the potential to alleviate the worries of surrounding residents caused by ground vibrations from blasting due to the fact that they can personally check the predicted vibration around their locale. Furthermore, since this data will be publicly available on the internet, it is also possible that this system can contribute to research in other fields.