期刊文献+
共找到97,608篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
1
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
GFRF R-CNN:Object Detection Algorithm for Transmission Lines
2
作者 Xunguang Yan Wenrui Wang +3 位作者 Fanglin Lu Hongyong Fan Bo Wu Jianfeng Yu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1439-1458,共20页
To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-cap... To maintain the reliability of power systems,routine inspections using drones equipped with advanced object detection algorithms are essential for preempting power-related issues.The increasing resolution of drone-captured images has posed a challenge for traditional target detection methods,especially in identifying small objects in high-resolution images.This study presents an enhanced object detection algorithm based on the Faster Regionbased Convolutional Neural Network(Faster R-CNN)framework,specifically tailored for detecting small-scale electrical components like insulators,shock hammers,and screws in transmission line.The algorithm features an improved backbone network for Faster R-CNN,which significantly boosts the feature extraction network’s ability to detect fine details.The Region Proposal Network is optimized using a method of guided feature refinement(GFR),which achieves a balance between accuracy and speed.The incorporation of Generalized Intersection over Union(GIOU)and Region of Interest(ROI)Align further refines themodel’s accuracy.Experimental results demonstrate a notable improvement in mean Average Precision,reaching 89.3%,an 11.1%increase compared to the standard Faster R-CNN.This highlights the effectiveness of the proposed algorithm in identifying electrical components in high-resolution aerial images. 展开更多
关键词 Faster R-CNN transmission line object detection GIOU GFR
在线阅读 下载PDF
Transforming Education with Photogrammetry:Creating Realistic 3D Objects for Augmented Reality Applications
3
作者 Kaviyaraj Ravichandran Uma Mohan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期185-208,共24页
Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed... Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector. 展开更多
关键词 Augmented reality education immersive learning 3D object creation PHOTOGRAMMETRY and StructureFromMotion
在线阅读 下载PDF
Fast Object Perception in The Subcortical Pathway:a Commentary on Wang et al.’s Paper in Human Brain Mapping(2023)
4
作者 MA Hao-Yun WEI Yu-Yin HU Li-Ping 《生物化学与生物物理进展》 北大核心 2025年第7期1904-1908,共5页
The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new functio... The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception.Rapid object processing is a critical function of visual system.Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property(TP).However,the mechanism of rapid TP processing remains unclear.The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation(TMS).They find that a subcortical magnocellular pathway is responsible for the early processing of TP,and this subcortical processing of TP accelerates object recognition.Based on their findings,we propose a novel training approach called subcortical magnocellular pathway training(SMPT),aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction. 展开更多
关键词 transcranial magnetic stimulation(TMS) subcortical pathway magnocellular pathway topological property object perception
原文传递
Study on Color Difference of Color Reproduction of 3D Objects
5
作者 GU Chong DENG Yi-qiang 《印刷与数字媒体技术研究》 北大核心 2025年第4期33-38,69,共7页
To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,a... To investigate the applicability of four commonly used color difference formulas(CIELAB,CIE94,CMC(1:1),and CIEDE2000)in the printing field on 3D objects,as well as the impact of four standard light sources(D65,D50,A,and TL84)on 3D color difference evaluations,50 glossy spheres with a diameter of 2cm based on the Sailner J4003D color printing device were created.These spheres were centered around the five recommended colors(gray,red,yellow,green,and blue)by CIE.Color difference was calculated according to the four formulas,and 111 pairs of experimental samples meeting the CIELAB gray scale color difference requirements(1.0-14.0)were selected.Ten observers,aged between 22 and 27 with normal color vision,were participated in this study,using the gray scale method from psychophysical experiments to conduct color difference evaluations under the four light sources,with repeated experiments for each observer.The results indicated that the overall effect of the D65 light source on 3D objects color difference was minimal.In contrast,D50 and A light sources had a significant impact within the small color difference range,while the TL84 light source influenced both large and small color difference considerably.Among the four color difference formulas,CIEDE2000 demonstrated the best predictive performance for color difference in 3D objects,followed by CMC(1:1),CIE94,and CIELAB. 展开更多
关键词 Color difference formula 3D objects Light source Gray scale Normalized residual sum of squares
在线阅读 下载PDF
DI-YOLOv5:An Improved Dual-Wavelet-Based YOLOv5 for Dense Small Object Detection
6
作者 Zi-Xin Li Yu-Long Wang Fei Wang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期457-459,共3页
Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dens... Dear Editor,This letter focuses on the fact that small objects with few pixels disappear in feature maps with large receptive fields, as the network deepens, in object detection tasks. Therefore, the detection of dense small objects is challenging. 展开更多
关键词 small objects receptive fields feature maps detection dense small objects object detection dense objects
在线阅读 下载PDF
Hybrid receptive field network for small object detection on drone view
7
作者 Zhaodong CHEN Hongbing JI +2 位作者 Yongquan ZHANG Wenke LIU Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第2期322-338,共17页
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones... Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built. 展开更多
关键词 Drone remote sensing object detection on drone view Small object detector Hybrid receptive field Feature pyramid network Feature augmentation Multi-scale object detection
原文传递
Aerial Object Tracking with Attention Mechanisms:Accurate Motion Path Estimation under Moving Camera Perspectives
8
作者 Yu-Shiuan Tsai Yuk-Hang Sit 《Computer Modeling in Engineering & Sciences》 2025年第6期3065-3090,共26页
To improve small object detection and trajectory estimation from an aerial moving perspective,we propose the Aerial View Attention-PRB(AVA-PRB)model.AVA-PRB integrates two attention mechanisms—Coordinate Attention(CA... To improve small object detection and trajectory estimation from an aerial moving perspective,we propose the Aerial View Attention-PRB(AVA-PRB)model.AVA-PRB integrates two attention mechanisms—Coordinate Attention(CA)and the Convolutional Block Attention Module(CBAM)—to enhance detection accuracy.Additionally,Shape-IoU is employed as the loss function to refine localization precision.Our model further incorporates an adaptive feature fusion mechanism,which optimizes multi-scale object representation,ensuring robust tracking in complex aerial environments.We evaluate the performance of AVA-PRB on two benchmark datasets:Aerial Person Detection and VisDrone2019-Det.The model achieves 60.9%mAP@0.5 on the Aerial Person Detection dataset,and 51.2%mAP@0.5 on VisDrone2019-Det,demonstrating its effectiveness in aerial object detection.Beyond detection,we propose a novel trajectory estimation method that improves movement path prediction under aerial motion.Experimental results indicate that our approach reduces path deviation by up to 64%,effectively mitigating errors caused by rapid camera movements and background variations.By optimizing feature extraction and enhancing spatialtemporal coherence,our method significantly improves object tracking under aerial moving perspectives.This research addresses the limitations of fixed-camera tracking,enhancing flexibility and accuracy in aerial tracking applications.The proposed approach has broad potential for real-world applications,including surveillance,traffic monitoring,and environmental observation. 展开更多
关键词 Aerial View Attention-PRB(AVA-PRB) aerial object tracking small object detection deep learning for Aerial vision attention mechanisms in object detection shape-IoU loss function trajectory estimation drone-based visual surveillance
在线阅读 下载PDF
Point-voxel dual transformer for LiDAR 3D object detection
9
作者 TONG Jigang YANG Fanhang +1 位作者 YANG Sen DU Shengzhi 《Optoelectronics Letters》 2025年第9期547-554,共8页
In this paper,a two-stage light detection and ranging(LiDAR) three-dimensional(3D) object detection framework is presented,namely point-voxel dual transformer(PV-DT3D),which is a transformer-based method.In the propos... In this paper,a two-stage light detection and ranging(LiDAR) three-dimensional(3D) object detection framework is presented,namely point-voxel dual transformer(PV-DT3D),which is a transformer-based method.In the proposed PV-DT3D,point-voxel fusion features are used for proposal refinement.Specifically,keypoints are sampled from entire point cloud scene and used to encode representative scene features via a proposal-aware voxel set abstraction module.Subsequently,following the generation of proposals by the region proposal networks(RPN),the internal encoded keypoints are fed into the dual transformer encoder-decoder architecture.In 3D object detection,the proposed PV-DT3D takes advantage of both point-wise transformer and channel-wise architecture to capture contextual information from the spatial and channel dimensions.Experiments conducted on the highly competitive KITTI 3D car detection leaderboard show that the PV-DT3D achieves superior detection accuracy among state-of-the-art point-voxel-based methods. 展开更多
关键词 proposal refinement encode representative scene features point voxel dual transformer object detection LIDAR d object detection generation proposals proposal refinementspecificallykeypoints
原文传递
Transorbital craniocerebral injury caused by metallic foreign objects
10
作者 Chongqing Yang Hongguang Cui +2 位作者 Xiawei Wang Chenying Yu Yan Long 《World Journal of Emergency Medicine》 2025年第3期277-279,共3页
Transorbital craniocerebral injury is a relatively rare type of penetrating head injury that poses a significant threat to the ocular and cerebral structures.^([1])The clinical prognosis of transorbital craniocerebral... Transorbital craniocerebral injury is a relatively rare type of penetrating head injury that poses a significant threat to the ocular and cerebral structures.^([1])The clinical prognosis of transorbital craniocerebral injury is closely related to the size,shape,speed,nature,and trajectory of the foreign object,as well as the incidence of central nervous system damage and secondary complications.The foreign objects reported to have caused these injuries are categorized into wooden items,metallic items,^([2-8])and other materials,which penetrate the intracranial region via fi ve major pathways,including the orbital roof (OR),superior orbital fissure (SOF),inferior orbital fissure(IOF),optic canal (OC),and sphenoid wing.Herein,we present eight cases of transorbital craniocerebral injury caused by an unusual metallic foreign body. 展开更多
关键词 transorbital craniocerebral injury ocular cerebral structures foreign objectas central nervous system damage penetrating head injury foreign objects metallic foreign objects clinical prognosis
暂未订购
PF-YOLO:An Improved YOLOv8 for Small Object Detection in Fisheye Images
11
作者 Cheng Zhang Cheng Xu Hongzhe Liu 《Journal of Beijing Institute of Technology》 2025年第1期57-70,共14页
Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objec... Top-view fisheye cameras are widely used in personnel surveillance for their broad field of view,but their unique imaging characteristics pose challenges like distortion,complex scenes,scale variations,and small objects near image edges.To tackle these,we proposed peripheral focus you only look once(PF-YOLO),an enhanced YOLOv8n-based method.Firstly,we introduced a cutting-patch data augmentation strategy to mitigate the problem of insufficient small-object samples in various scenes.Secondly,to enhance the model's focus on small objects near the edges,we designed the peripheral focus loss,which uses dynamic focus coefficients to provide greater gradient gains for these objects,improving their regression accuracy.Finally,we designed the three dimensional(3D)spatial-channel coordinate attention C2f module,enhancing spatial and channel perception,suppressing noise,and improving personnel detection.Experimental results demonstrate that PF-YOLO achieves strong performance on the challenging events for person detection from overhead fisheye images(CEPDTOF)and in-the-wild events for people detection and tracking from overhead fisheye cameras(WEPDTOF)datasets.Compared to the original YOLOv8n model,PFYOLO achieves improvements on CEPDTOF with increases of 2.1%,1.7%and 2.9%in mean average precision 50(mAP 50),mAP 50-95,and tively.On WEPDTOF,PF-YOLO achieves substantial improvements with increases of 31.4%,14.9%,61.1%and 21.0%in 91.2%and 57.2%,respectively. 展开更多
关键词 FISHEYE object detection and recognition small object detection deep learning
在线阅读 下载PDF
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
12
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
A Novel Reliable and Trust Objective Function for RPL-Based IoT Routing Protocol
13
作者 Mariam A.Alotaibi Sami S.Alwakeel Aasem N.Alyahya 《Computers, Materials & Continua》 2025年第2期3467-3497,共31页
The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the... The Internet of Things (IoT) integrates diverse devices into the Internet infrastructure, including sensors, meters, and wearable devices. Designing efficient IoT networks with these heterogeneous devices requires the selection of appropriate routing protocols, which is crucial for maintaining high Quality of Service (QoS). The Internet Engineering Task Force’s Routing Over Low Power and Lossy Networks (IETF ROLL) working group developed the IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) to meet these needs. While the initial RPL standard focused on single-metric route selection, ongoing research explores enhancing RPL by incorporating multiple routing metrics and developing new Objective Functions (OFs). This paper introduces a novel Objective Function (OF), the Reliable and Secure Objective Function (RSOF), designed to enhance the reliability and trustworthiness of parent selection at both the node and link levels within IoT and RPL routing protocols. The RSOF employs an adaptive parent node selection mechanism that incorporates multiple metrics, including Residual Energy (RE), Expected Transmission Count (ETX), Extended RPL Node Trustworthiness (ERNT), and a novel metric that measures node failure rate (NFR). In this mechanism, nodes with a high NFR are excluded from the parent selection process to improve network reliability and stability. The proposed RSOF was evaluated using random and grid topologies in the Cooja Simulator, with tests conducted across small, medium, and large-scale networks to examine the impact of varying node densities. The simulation results indicate a significant improvement in network performance, particularly in terms of average latency, packet acknowledgment ratio (PAR), packet delivery ratio (PDR), and Control Message Overhead (CMO), compared to the standard Minimum Rank with Hysteresis Objective Function (MRHOF). 展开更多
关键词 IOT LLNs RPL objective function OF MRHOF OF0 routing metrics RELIABILITY trustworthiness
在线阅读 下载PDF
A Systematic Review of YOLO-Based Object Detection in Medical Imaging:Advances,Challenges,and Future Directions
14
作者 Zhenhui Cai Kaiqing Zhou Zhouhua Liao 《Computers, Materials & Continua》 2025年第11期2255-2303,共49页
The YOLO(You Only Look Once)series,a leading single-stage object detection framework,has gained significant prominence in medical-image analysis due to its real-time efficiency and robust performance.Recent iterations... The YOLO(You Only Look Once)series,a leading single-stage object detection framework,has gained significant prominence in medical-image analysis due to its real-time efficiency and robust performance.Recent iterations of YOLO have further enhanced its accuracy and reliability in critical clinical tasks such as tumor detection,lesion segmentation,and microscopic image analysis,thereby accelerating the development of clinical decision support systems.This paper systematically reviews advances in YOLO-based medical object detection from 2018 to 2024.It compares YOLO’s performance with othermodels(e.g.,Faster R-CNN,RetinaNet)inmedical contexts,summarizes standard evaluation metrics(e.g.,mean Average Precision(mAP),sensitivity),and analyzes hardware deployment strategies using public datasets such as LUNA16,BraTS,andCheXpert.Thereviewhighlights the impressive performance of YOLO models,particularly from YOLOv5 to YOLOv8,in achieving high precision(up to 99.17%),sensitivity(up to 97.5%),and mAP exceeding 95%in tasks such as lung nodule,breast cancer,and polyp detection.These results demonstrate the significant potential of YOLO models for early disease detection and real-time clinical applications,indicating their ability to enhance clinical workflows.However,the study also identifies key challenges,including high small-object miss rates,limited generalization in low-contrast images,scarcity of annotated data,and model interpretability issues.Finally,the potential future research directions are also proposed to address these challenges and further advance the application of YOLO models in healthcare. 展开更多
关键词 YOLO medical imaging object detection performance analysis core challenges
在线阅读 下载PDF
Enhanced Multi-Scale Object Detection Algorithm for Foggy Traffic Scenarios
15
作者 Honglin Wang Zitong Shi Cheng Zhu 《Computers, Materials & Continua》 2025年第2期2451-2474,共24页
In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scal... In foggy traffic scenarios, existing object detection algorithms face challenges such as low detection accuracy, poor robustness, occlusion, missed detections, and false detections. To address this issue, a multi-scale object detection algorithm based on an improved YOLOv8 has been proposed. Firstly, a lightweight attention mechanism, Triplet Attention, is introduced to enhance the algorithm’s ability to extract multi-dimensional and multi-scale features, thereby improving the receptive capability of the feature maps. Secondly, the Diverse Branch Block (DBB) is integrated into the CSP Bottleneck with two Convolutions (C2F) module to strengthen the fusion of semantic information across different layers. Thirdly, a new decoupled detection head is proposed by redesigning the original network head based on the Diverse Branch Block module to improve detection accuracy and reduce missed and false detections. Finally, the Minimum Point Distance based Intersection-over-Union (MPDIoU) is used to replace the original YOLOv8 Complete Intersection-over-Union (CIoU) to accelerate the network’s training convergence. Comparative experiments and dehazing pre-processing tests were conducted on the RTTS and VOC-Fog datasets. Compared to the baseline YOLOv8 model, the improved algorithm achieved mean Average Precision (mAP) improvements of 4.6% and 3.8%, respectively. After defogging pre-processing, the mAP increased by 5.3% and 4.4%, respectively. The experimental results demonstrate that the improved algorithm exhibits high practicality and effectiveness in foggy traffic scenarios. 展开更多
关键词 Deep learning object detection foggy scenes traffic detection YOLOv8
在线阅读 下载PDF
Syn-Aug:An Effective and General Synchronous Data Augmentation Framework for 3D Object Detection
16
作者 Huaijin Liu Jixiang Du +2 位作者 Yong Zhang Hongbo Zhang Jiandian Zeng 《CAAI Transactions on Intelligence Technology》 2025年第3期912-928,共17页
Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmenta... Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmentation techniques for point clouds,where global augmentation is applied to the entire point cloud of the scene,and cut-paste samples objects from other frames into the current frame.Both types of data augmentation can improve performance,but the cut-paste technique cannot effectively deal with the occlusion relationship between the foreground object and the background scene and the rationality of object sampling,which may be counterproductive and may hurt the overall performance.In addition,LiDAR is susceptible to signal loss,external occlusion,extreme weather and other factors,which can easily cause object shape changes,while global augmentation and cut-paste cannot effectively enhance the robustness of the model.To this end,we propose Syn-Aug,a synchronous data augmentation framework for LiDAR-based 3D object detection.Specifically,we first propose a novel rendering-based object augmentation technique(Ren-Aug)to enrich training data while enhancing scene realism.Second,we propose a local augmentation technique(Local-Aug)to generate local noise by rotating and scaling objects in the scene while avoiding collisions,which can improve generalisation performance.Finally,we make full use of the structural information of 3D labels to make the model more robust by randomly changing the geometry of objects in the training frames.We verify the proposed framework with four different types of 3D object detectors.Experimental results show that our proposed Syn-Aug significantly improves the performance of various 3D object detectors in the KITTI and nuScenes datasets,proving the effectiveness and generality of Syn-Aug.On KITTI,four different types of baseline models using Syn-Aug improved mAP by 0.89%,1.35%,1.61%and 1.14%respectively.On nuScenes,four different types of baseline models using Syn-Aug improved mAP by 14.93%,10.42%,8.47%and 6.81%respectively.The code is available at https://github.com/liuhuaijjin/Syn-Aug. 展开更多
关键词 3D object detection data augmentation DIVERSITY GENERALIZATION point cloud ROBUSTNESS
在线阅读 下载PDF
An Improved Knowledge Distillation Algorithm and Its Application to Object Detection
17
作者 Min Yao Guofeng Liu +1 位作者 Yaozu Zhang Guangjie Hu 《Computers, Materials & Continua》 2025年第5期2189-2205,共17页
Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,... Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,which may limit the comprehensive learning of the student network.Additionally,the imbalance between the foreground and background also affects the performance of the model.To address these issues,this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part,and logit-based distillation to improve the detection performance of the category prediction part.Specifically,for the intermediate layer feature distillation,we introduce feature resampling to reduce the risk of the student model merely imitating the teacher model.At the same time,we incorporate a Spatial Attention Mechanism(SAM)to highlight the foreground features learned by the student model.In terms of output layer feature distillation,we divide the traditional distillation targets into target-class objects and non-target-class objects,aiming to improve overall distillation performance.Furthermore,we introduce a one-to-many matching distillation strategy based on Feature Alignment Module(FAM),which further enhances the studentmodel’s feature representation ability,making its feature distribution closer to that of the teacher model,and thus demonstrating superior localization and classification capabilities in object detection tasks.Experimental results demonstrate that our proposedmethodology outperforms conventional distillation techniques in terms of object detecting performance. 展开更多
关键词 Deep learning model compression knowledge distillation object detection
在线阅读 下载PDF
DAFPN-YOLO: An Improved UAV-Based Object Detection Algorithm Based on YOLOv8s
18
作者 Honglin Wang Yaolong Zhang Cheng Zhu 《Computers, Materials & Continua》 2025年第5期1929-1949,共21页
UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,comp... UAV-based object detection is rapidly expanding in both civilian and military applications,including security surveillance,disaster assessment,and border patrol.However,challenges such as small objects,occlusions,complex backgrounds,and variable lighting persist due to the unique perspective of UAV imagery.To address these issues,this paper introduces DAFPN-YOLO,an innovative model based on YOLOv8s(You Only Look Once version 8s).Themodel strikes a balance between detection accuracy and speed while reducing parameters,making itwell-suited for multi-object detection tasks from drone perspectives.A key feature of DAFPN-YOLO is the enhanced Drone-AFPN(Adaptive Feature Pyramid Network),which adaptively fuses multi-scale features to optimize feature extraction and enhance spatial and small-object information.To leverage Drone-AFPN’smulti-scale capabilities fully,a dedicated 160×160 small-object detection head was added,significantly boosting detection accuracy for small targets.In the backbone,the C2f_Dual(Cross Stage Partial with Cross-Stage Feature Fusion Dual)module and SPPELAN(Spatial Pyramid Pooling with Enhanced LocalAttentionNetwork)modulewere integrated.These components improve feature extraction and information aggregationwhile reducing parameters and computational complexity,enhancing inference efficiency.Additionally,Shape-IoU(Shape Intersection over Union)is used as the loss function for bounding box regression,enabling more precise shape-based object matching.Experimental results on the VisDrone 2019 dataset demonstrate the effectiveness ofDAFPN-YOLO.Compared to YOLOv8s,the proposedmodel achieves a 5.4 percentage point increase inmAP@0.5,a 3.8 percentage point improvement in mAP@0.5:0.95,and a 17.2%reduction in parameter count.These results highlight DAFPN-YOLO’s advantages in UAV-based object detection,offering valuable insights for applying deep learning to UAV-specific multi-object detection tasks. 展开更多
关键词 YOLOv8 UAV-based object detection AFPN small-object detection head SPPELAN DualConv loss function
在线阅读 下载PDF
Salient Object Detection Based on Multi-Strategy Feature Optimization
19
作者 Libo Han Sha Tao +3 位作者 Wen Xia Weixin Sun Li Yan Wanlin Gao 《Computers, Materials & Continua》 2025年第2期2431-2449,共19页
At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of... At present, salient object detection (SOD) has achieved considerable progress. However, the methods that perform well still face the issue of inadequate detection accuracy. For example, sometimes there are problems of missed and false detections. Effectively optimizing features to capture key information and better integrating different levels of features to enhance their complementarity are two significant challenges in the domain of SOD. In response to these challenges, this study proposes a novel SOD method based on multi-strategy feature optimization. We propose the multi-size feature extraction module (MSFEM), which uses the attention mechanism, the multi-level feature fusion, and the residual block to obtain finer features. This module provides robust support for the subsequent accurate detection of the salient object. In addition, we use two rounds of feature fusion and the feedback mechanism to optimize the features obtained by the MSFEM to improve detection accuracy. The first round of feature fusion is applied to integrate the features extracted by the MSFEM to obtain more refined features. Subsequently, the feedback mechanism and the second round of feature fusion are applied to refine the features, thereby providing a stronger foundation for accurately detecting salient objects. To improve the fusion effect, we propose the feature enhancement module (FEM) and the feature optimization module (FOM). The FEM integrates the upper and lower features with the optimized features obtained by the FOM to enhance feature complementarity. The FOM uses different receptive fields, the attention mechanism, and the residual block to more effectively capture key information. Experimental results demonstrate that our method outperforms 10 state-of-the-art SOD methods. 展开更多
关键词 Salient object detection multi-strategy feature optimization feedback mechanism
在线阅读 下载PDF
An Objective Method for Temperature and Wind Forecast at the Venues of the 14 th National Winter Games
20
作者 Xuefeng YANG Sitong LIU 《Meteorological and Environmental Research》 2025年第2期59-61,共3页
According to the demand for weather forecast at the venues of the 14 th National Winter Games,based on the data of the fine grid model of the European Centre(EC)and RMAPS model,as well as the real-time observation dat... According to the demand for weather forecast at the venues of the 14 th National Winter Games,based on the data of the fine grid model of the European Centre(EC)and RMAPS model,as well as the real-time observation data of the competition fields,a dynamic optimal correction method was proposed to improve the accuracy rate of temperature and wind speed prediction.Through techniques such as deviation correction and univariate linear regression,mathematical models applicable to different competition regions were constructed,and the effective correction of objective forecast products within 0-120 h were realized.The results show that this method significantly improved the accuracy rate of the prediction of temperature,wind speed and extreme wind speed,and the effect was more obvious especially when the model performance was unstable.Meanwhile,terrain and climate background had a significant impact on the correction effect.This study provides new technical support for mountain meteorological forecast. 展开更多
关键词 Temperature forecast Wind speed forecast objective correction Dynamic optimum Mountain meteorology
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部